
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

ADB015698

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
only; Test and Evaluation; 19 JUL 1974. Other
requests shall be referred to Air Force
Avionics Laboratory, Wright-Patteson AFB, OH
45433.

AFAL ltr, 24 Feb 1978

THIS REPORT HAS BEEN DELIMITED

AND CLEARED FOR PUBLIC RELEASE

UNDER DOD DIRECTIVE 5200.20 AND

NO RESTRICTIONS ARE IMPOSED UPON

ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED.

I ■■■ "■■■< " <umM -»i ii

AFAL-TR-73-40

00
05
CO

- ^

y

STIIUCTUREÜ SOFTWARE STUDY

J, David McGonagle
dames P. Anderson & Co. *+' ~ 35"S>

©
CQ

TECHNICAL REPORT AFAL-TR-73-40

October 1974

CD

r
-, • 1376

w -< i

Cp" A

Distribution limited to U.S. Government agencies only,
Test and Evaluation, 19 July 1974.

Other requests for this document must be referred to the
Air Force Avionics Laboratory AAT , Wright-Patterson AFB, Ohio 45433

Air Force Avionics Laboratory
Air Force Systems Command

Wright-Patterson Air Force Base, Ohio

ito-...^.. ..^ rMrim-iiii^tttftiirit'Mr-"-^1"-"--- ^ ..,.■■. ■.^.^-■■r ^ .. ^.,....:>.. . . -. .- - -
 ^ -- ■■

•m tm

NOTICE

When Government drawings, specifications, or other data are used for anv

re^e* by tapU««- or -»^^•^^17.1^^^ ^
other person or corporation, or conveying anv riehts or n^mi7 , y

use, or MU „, patented tnventton thaLTa^ ^y
0rbrÄ,S.t^r&ClUre'

Copies of this report should not be returned unless mf,.™ t.
3eeUrity o„„s,derations. eoateaetaa, ^^Tt^LTrZT^^

-^»—"-■ mmmm

r ■^Wllll_—. ■UH.J.1----. ■■ -i-l-. ^B-

STRUCTURED SOFTWARE STUDY

J. David McGonagle

lWiWHlt...lll«M.-.«.',M-< MM^. ^UM, -' - - " ' -'■ ' 1- -^■--'— ■ -

 ,.,.„
 -■ -

i'

J

FOREWARD
I

This study effort was carried out under Project 6090» Task 01,
Work Unit 07 by the James P. Anderson Company! Box h2. Fort
Washington, Pennsylvania 1903^. The principal investigator was

"*■ J. David McGonagle of the J.D. McGonagle Company, 2h6 Howarth
Road, Media, Pennsylvania 19063. Paul G. Stokholm, Capt. USAF_
AFAL/AAM was the program monitor. The study was conducted during
the period from 1 May 1972 through February 197l+. This report

was submitted on 29 April 197^.

Publication of this report does not constitute Air Force approval
of the report's findings or conclusions. It is published only
for the exchange and stimulation of^*öeas,

R.N. Spanbauey, LTC, USAF
Chief
System Avionics Division

ii

,.^.,JJ^..a.— -J-- ^ ^....-,..,...-^—.^.■J...,...».^„.^. > — —^...
•,: • ■--"^--- -^— -.-— ■' ———-~- J

ppj ML.mi-ummmmBm mmmammm^mmm^j-i-- ^fmm^ ■BP^*™

ABSTRACT

This study reports an evaluation of Structured Programming as an aid in the
production of highly reliable computer programs. This approach to problem analysis
and program composition organizes the program text to clearly reflect the order of
execution for the program. The resultant program text reflects the subdivision of the
problem into smaller tasks which are clearly identifiable. The rules for performance
and ordering of these sub-tasks are reflected in the limited but sufficient set of controls
used in program construction. A set of Principles of Structured Programming is
developed together with guides for determining an optimal upper and lower bounds on
program size. The applications of the Principles to a program are illustrated in the
study report. A set of observations and conclusions drawn from the experience of
developing a program in this way are presented.

'

iii

 , — -.. —.- ^ .■,. .. ,. ,,-, .-ni ■ *~ - ■*■

■■'■ Vi '"IV I
..p,.,.«.!,,...^.. —

Table of Contents

* Page

I. INTRODUCTION 1

II. A REVIEW OF STRUCTURED PROGRAMMING 3

1. Introduction 3

2. Historical Background 4

3. Basic Concepts 5

4. Principles of Structured Programming 18

DI. APPLICATION OF THE PRINCIPLES OF STRUCTURED
PROGRAMMING 34

1. Introduction 34

2. Test Problem 34

3. The Program 35

4. Sample Programs as an Illustration of the
Principles , 50

5. Analyzing Programs for their Correctness 56

IV. THE DIJKSTRA PROGRAMS AND THIS STUDY 66

V. RESULTS AND OBSERVATIONS 75

1. Observation 75

2. Families of Programs 76

3. Program Critical Paths 76

4. Recognizing Common Functions 76

5. Error Detection in Programs 77

6. Memory Efficiency 77

7. Hardware-Software Trade-Offs 78

REFERENCES 79

BIBLIOGRAPHY 81

.^^i-iiiliii imiiiiriiiiiiiiiiiiiiimiii lyart'i.i tmMmtt^KiM A
I PBfiCEDINS PAGE BLANK-HOT fllKSD

m^^mm ^-^r-" m^mm ^^-" ''-'-U--JB

List of Figures

Page

Figure 2. 1. Simple Problem Decomposition "•••••

Figure 2. 2. Second Order Problem Decomposition 7

g
Figure 2. 3. Two Level Program Text

Figure 2. 4. Trace of Control for Execution of PROGRAMl 10

Figure 2. 5. Third Order Problem Decomposition 12

Figure 2. 6. LEVEL3 Programs - No Factoring 13

Figure 2.7. LEVELS and LEVEL4 - Showing Factoring 14

20 Figure 2. 8. A First Program for Simulations

Figure 2. 9. A Program to Perform a Simulation 21

22
Figure 2.10. Text of PDP11SIM

Figure 2.11. Fifth Order Decomposition of Problem 23

Figure 2.12. Level Designations in the Program Text 25

Figure 2.13. Flow Diagram for the Program PDP11SIM 29

Figure 2.14. Flow Diagram for the Program RUNSIM 31
32

Figure 2.15. Text of RUNSIM ~

Figure 3. 1. Text of PDP11SIM 36

Figure 3.2. Flow Diagram for the Program PDP11SIM 37
39

Figure 3.3. Text of RUNSIM • • l

Figure 3.4. Flow Diagram for the Program RUNSIM 40

Figure 3. 5. Text of INSTRUCTNHNDLR 42

Figure 3.6. Flow Diagram for the Program INSTRUCTNHNDLR 43
44

Figure 3. 7. Text of FINDFORMAT

Figure 3.8. Flow Diagram for the Program FINDFORMAT 45
46

Figure 3. 9. Text of IXECUTE •

Figure 3.10. Flow Diagram for the Program IXECUTE 47
48

Figure 3,11. Text of FINDONEOP

Figure 3.12. Flow Diagram for the Program FINDONEOP 49

vi

 -:-»a..-.J.J-J -..- ■' imliiM»

r --''"'■'■•JI "■- ■.

List of Figures (continued)

Page

Figure 3.13. Text of OPNONE 51

Figure 3.14, Flow Diagram for the Program OPNONE 52

Figure 4. 1. Dijkstra's Prime Number 69

List of Tables

Page

Table 3. 1, Opfield Contents 61

Table 3.2. J Assignments All Possible Instruction Patterns 62

Table 3. 3, Source Field as Operation Indicator 64

Table 3. 4, Possible Instruction Bit Patterns at OPNONE (J = 0) ... 65

Table 3.5. Bit Patterns Selected at Each Level 65

vii

■' -^-- —■■ - -' -.-—.^......^^.-^.^.-J- -- —"-- ■•' —■ ■
. . ..-,...—^——.^.-^■,

SECTION I

INTRODUCTION

This report presents the results of a test of the use of Structured Programming
as described by Professor Dijkstra. The study has two objectives: 1) determine the
suitability of the Dijkstra paper, "Notes on Structured Programming", as a basis for
the practice of Structured Programming, and 2) evaluate the applicability of Structured
Programming to the generation of aerospace software.

The study is motivated by a recognition of the requirement for improvements
in the software generation process. This requirement is based on the high cost asso-
ciated with the acquisition of the highly reliable software necessary to the aerospace
mission. Increases in both the size and the complexity of systems indicate Ugh costs.

The approach to software composition, evaluated in this study, emphasizes
steps that lead to a high level of confidence in the correctness of computer programs.
An understandable program text is identified as one of the principal vehicles for
achieving correct programs. In particular, a solution to a programming task is
specified with a program text that organizes the problem into sets of smaller tasks.
This specification involves the use of a restricted set of control structures to organize
the tasks. It is intended that the resultant text be the principal documentation for the
program, and that the text be sufficiently clear to support a convincing demonstration
of the program's validity.

This report presents a review of Structured Programming in Section II. The
review includes an introduction to the background of the concept of Structured Pro-
gramming, and the development and illustration of a set of principles of Structured
Programming. The necessity for the identification and enumeration of the principles
was motivated by failures of early attempts to apply Structured Programming based
only on the Dijkstra paper.

Section III presents an orderly development of a segment of a program to illus-
trate the repeated application of the principles. The application of the principles is
discussed. Following this discussion, arguments for the validity of the work are
formulated.

In Section IV the programs developed by Dijkstra are discussed. A set of
axioms that provide a rationale for Dijkstra's approach are presented. The program
form adopted for the study is then compared with the form used by Dijkstra.

Section V of this report presents a set of observations that resulted from the
effort. An extensive bibliography of the literature of Structured Programming is
included in this report.

■ -" ' -— :- ■—■■■- '- - — ' -■'■'-—■■■ ■■ -^ —• •-- —-- ■„..■.„...-.-.,,, I'l-imniiimii - ■-'-- ,.......».^.^..»—wMa^.^..,.......n.^....J.

I"1 " Wi JJUJiWlJ..

Both of the objectives of the study have been addressed by the report. The
conclusions of the study are that Structured Programming can help improve the
effectiveness of aerospace systems, but that the Dijkstra paper is not sufficient
for use as the basis for the Structured Programming approach to software produc-
tion. Although the principles derived from the Dijkstra paper and illustrated in
this report will probably be extended on the basis of experience, they provide
sufficient guidance for the development of well structured programs.

i

 , J-iiKilrtTirtiilMiWMIIirtiitMiim^
^^.^.^^v^^diU^^^i..*^^ ^^^^^^^-,_3^^^x:..

SECTION II

A REVIEW OF STRUCTURED PROGRAMMING

1. INTRODUCTION

The term Structured ProKramming identifies a particular philosophy of
programming. A philosophy of programming is a development and application of a
body of principles about programming. Programming can be defined as the art or
technique of composing algorithms, called programs, for execution by a processor
to perform a particular task.

As is implied by its name. Structured Programming is concerned with the
organization or structure of programs. In particular, Structured Programming is
concerned with the listing or text of the program.

This concern with the program text is based upon its usefulness as the
primary record jf the program. The text provides a real basis for relating the
execution of the program to the problem it is to solve. Therefore, it is important
that the text of the program be understandable. A program text is understandable
if a person, unfamiliar with the program, can easily read the code to determine what
it does and how it operates. If a program text is understandable, then it is possible
to establish a clear, definite, and consistent relationship between the problem and
the program execution based on the text.

Each of the principles of Structured Programming presented in the latter part
of this section has as a goal the formation of an understandable text. The primary
goal of Structured Programming, then, is the production of correct and understand-
able programs, the text of which can adequately support a convincing demonstration
of the correctness of the program with respect to the problem.

Secondary goals of Structured Programming involve the generalization and
adaptability of the program. To accomplish these aims, the programs are constructed
so as to localize the handling of individual parts of the problem to specific, easily
identified parts of the program text. These adaptations may be motivated by an
anticipation of changes and modifications in the program specifications, to adjust
to new requirements. Alterations in the program may also be motivated by effi-
ciency considerations. These changes are easier if their effects are localized in
the program.

Advocates of Structured Programming base their approach to program con-
struction upon the capability of a programmer to arrange or structure the program
text according to any pre-determined criteria. The text can be arranged or structured
to provide the desired simple and direct relationship between itself, the static form,

^— • ■ ■-■- — - - - - —- .. ■-.: ,. Jl

*mma

and the dynamic or executional form of the program. The text can then be made the
basis for assertions about the properties of. and the validity of the dynamic form of
the program The size and the complexity of the program and its sub-structures
can be controlled to conform to the perceptual limitations of the programmer. These
discip'ined actions aid both understanding and validation.

The concrete realization of all of these basic philosophical beliefs is a usefully

structured or a well structured program.

Although the primary proponents of Structured Programming are concerned
with achieving a philosophically pure way of deriving a well 8tr-tur^ P^"' ^
is currently no guaranteed "cookbook recipe" with which to produce one. The pnmary
ingredients, Ts in all programming, are the ingenuity, experience, and reasoning

ability of the programmer.

2. HISTORICAL BACKGROUND

The most prominent names among the proponents of Structured Programming
include E. Dijkstra. N. Wirth. B. Randell. C. A. R. Hoare. and H. Mdls. Stimu-
lation for the idea of Structured Programming originated from a ^«er submitted b^
E Diikstra and published under the title. "GOTO Statement Considered Harmful.
Most ome organized work in the field traces back to a previously -puMished pa^
distributed by Dijkstra among members of the computer community. This paper has
rece^ten published in a collection of pa^rs.« A theoretical ^sis forjruc^red
Programming was originally established by Böhm and Jacopim* and Hoare and

extended by Mills. 6

Many of the ideas expressed by Dijkstra had previously been ^rporated in
.rood programming practice. These ideas were also discussed in the literature in a
d^ointXrt ve way. However. Dijkstra's paper contains a lengthy philosophical

rsuss^n regarding the desirability of organizing the ^Xl^ Ms^Z
in a useful way so as to produce well structured programs. In addition, his paper
contaTiTa loosely formulated set of principles to guide the programmer m the con-
st^ ion of such programs, together with some samples of the construction of well
^ctured programs It is the purpose of these principles to aid the Programmer
fnTciÄthfspecified goals. Program texts organized (structured) according
o the principles can be more readily comprehended by others as well as by the

oriEinal Programmer. A determination of the validity of the program with respect
LTSation. can then possibly be made from an ^^^^^B-
The areas of impact for future modifications to the program can be identified by
«ferrTng to the program text. Hie balance of this section deals with these principles

of good programming practice.

-■■"' '- -' -—- ■'■-—"■■■■ -"- ..,—..--..■-...■-^-.-^■..-—.■^ -■ ,. -...^.^:i»-.,..iJ*.^.^.^»,..li,||i|||m „^ - ,,l^.a;....-..iJ^-.|iim,»l.lJJ»»

3. BASIC CONCEPTS

While developing the thesis of demonstrably correct programs, Dijkstra's
paper observes the difficulty (near impossibility) of producing correct programs.
As Dijkstra pointed out, this difficulty is particularly evident where full use is
made of the unconstrained capabilities and sequencing control structures available
in modern computer! and programming languages. Discussions relevant to this
problem may be found throughout the literature.^ The controversy over the GOTO
statement is particularly relevant. 1, 7, 8,9, 10, 11

As an alternative to the undisciplined use of generalized sequencing and
control structures a controlled and restricted sequencing discipline, shown by
Böhm and Jacopini4 to be sufficient for the production of any program, is adopted.

It is proposed that programs be written primarily as an oriered sequence of
steps. The statements that make up a program are to be executed in the order in
which they are written, with no backward reference.

It is asserted that a program structured this way is the easiest of all program
organizations to understand. The text of such a program bears a one-to-one relation-
ship to the execution form of the program. This makes it easier to formulate a
convincing demonstration of the correctness of an execution, based upon the text.

It is interesting to note that the basic paper, as well as later papers, stresses
a "convincing" demonstration rather than a more forxnal "proof" of correctness. The
notion of being able to demonstrate the correctness of a program stated as a list of
an ordered set of steps has strong intuitive appeal. There is a first, second, third,
and ultimately an nth step in this program organization. Each step follows its prede-
cessor in a systematic way. The effect of the program's execution can be analyzed
through the application of stepwise enumerative reasoning.

This seems to suggest that one has some chance to prove the correctness of
such a program. Possibly some of the techniques reported by London,12. 13 Good,14

and others^5 could be useful in constructing such proofs.

From the philosophical point of view, the most primitive operation of Struc-
tured Programming is the division of the problem to be solved into two or more
smaller problems or subtasks. In the interest of simplicity the subtasks are ordered.
This order is expressed by the relative positioning of each of the subtasks in a list.

When these subtasks are carried out or executed, in the order specified, then
the effect of their execution is the desired result - a solution to the problem. The
sequential ordering of the subtasks accommodates any time dependence that might
exist between the subtasks. Figure 2.1 illustrates a decomposition of a simple
abstract problem into a sequence of subtasks.

mm uaMMMH^MI mmtmäim ■ - -^

PROBLEM

'TZ
SUBTASK1 SUBTASK2

Figure 2.1. Simple Problem Decomposition

When this partitioning of the problem is expressed as a program, the subtasks
are carried out by the execution of programs in the order specified, as shown below:

PROGRAM1: begin PE1; PE2; end PROGRAM1;

where PE1 performs SUBTASK1 and PE2 performs SUBTASK2. When the program is
executed, the control of the process to solve the original problem rests in PROGRAM1.
Whenever PROGRAMl is executed the execution begins with the first step, which per-
forms SUBTASKl. After PE1 is completed, control is returned to PROGRAMl for
sequencing to the next step. At this point PE2 is executed. When this step is completed,
then the execution of PROGRAMl is completed. The program has been executed in a
purely sequential manner with each step carried out exactly once in the order stated.
The program consists of two steps or program elements (PE's). A PE can take the
form of another program, a subprogram, a macro instruction or a machine instruction,
as appropriate.

The orderly translation of the problem decomposition into this program organi-
zation establishes the relationship between the problem and the program text. Parti-
tioning the problem and the program along the same boundaries as demonstrated in
the above example exposes and preserves the analysis of the problem. The handling
of the parts of the problem in this way also localizes them to specific parts of the
program text.

The program text, written to express the problem decomposition, is laid out
in the order of execution for the program. The simple sequential ordering from top
to bottom (beginning to end) satisfies the goals enumerated earlier for Structured
Programming (e.g., clear, correct, understandable and adaptable).

If, at this time, the problem has been decomposed into subtasks, all of which
are satisfied by PE's which are defined, the decomposition process is completed.
A PE is considered to be defined if: 1) there exist programs in a library of programs
or instructions in the instruction repertoire which can carry out the subtask and produce

■-- ■-- - ^titmtmtmm -- --- mmmm

HI ^s:

the desired result; or 2) it has occurred previously in the decomposition process.
The latter case is considered to be a factorable PE - a program element the
execution of which is invoked from more than one place in the program structure.

In most instances the program reflecting the first step of decomposition has
some PE's which are undefined, and thus does not meet the criteria for completion.

Whenever any of the PE's are undefined, the task to be performed by that
PE can be treated as a problem to be solved. Partitioning is then repeated as often
as is required. The result of this partitioning is expressed as a program, just as
was done for the original decomposition.

A second application ot the decomposition operation creates subtasks of the
subtasks, as the partitioning operation is applied to the subtasks derived in the
first decomposition. As successive decompositions of the problem are carried
out, more of the details involved in the problem r.nd its solution are incorporated.
To illustrate this point, a second order decomposition of the abstract problem is
presented in Figure 2.2.

PROBLEM

— - —

SUBTASK1 Layer 1 SUBTASK2

 _.. — - . _ . — — - —

/

SUBTASK1.1 SUBTASK1.2 SUBTASK2.1 SUBTASK2.2 SUBTASK2.3

Layer 2

Figure 2.2. Second Order Problem Decomposition

Figure 2.2 illustrates the ordering of the subtasks that result from the second
order application of the primitive operation, decomposition. The subtasks shown in
the figure are stratified into layers according to the order of the decomposition from
which they resulted. Layer 1 contains the set of subtasks which result from the

■MUMHMikälliH «■«Ml --

decomposition of the problem. Layer 2, on the other hand, contains the set of sub-
tasks formed by the decomposition of the members of Layer 1. It is not essential
Ümt all members of the layer be decomposed further; some may already be completely
defined. This tree-like organization of the partitioned process, in layers, represents
one of the possible stratifications of the task. A different decomposition of the problem
would yield a different structure.

It is not the hierarchical tree formed by the decomposition of the problem that
is of primary interest. Instead, the programs constructed from the problem decompo-
sition are the focal point for consideration. It is often helpful to distinguish between
the ideas of problem decomposition and program composition. To help separate
these two concepts, this study uses different terms for similar notions that occur
in each. The term subtask is used when describing the parts which result from the
decomposition of a problem. The net effect of a problem or task is accomplished by
performing a proper set of subtasks. A task or a subtask is performed by executing
a program, and a program is specified by an ordered set of program elements (PE's).
The term layer is used to describe the relative location of subtasks when speaking of
the nodes of decomposition. The hierarchical grouping of programs and program
elements, on the other hand, are described as belonging to levels of the program
organization.

For each layer of the problem decomposition, at least one program or program
element, PE, is constructed to identify and order the sequence of the subtasks in that
layer. A PE then will most often appear in two ways in the program organization:
1) a PE first occurs as a step in a program (e.g., a procedure call) to define another
PE; 2) the PE is itself defined at a lower level (higher numbered).

The program presented earlier corresponds to the decomposition of the abstract
problem into the first layer of subtasks. That program, PROGRAM1, is the highest
level of the program to solve the abstract problem. The second layer of the decompo-
sition, Figure 2.2, illustrates the need for more than one program to represent the
decomposition. At the second layer there are five additional subtasks, two of which
result from the partitioning of SUBTASK1, and three as sub-components of SUBTASK2.

The text of the program composed to solve the decomposed problem is shown
in Figure 2 3, in which three programs are defined These programs are identified
and separated into two levels. The program (PROGRAM1) which expresses the first
decomposition of the problem is placed in the outermost level (LEVEL1). Each of
the steps of this program consist of calls on other programs (PE1 and PE2). These
program elements are defined, in the example, at the next level (LEVEL2) of the
program structure. If any of the PE's used in the programs PE1 and PE2 are defined
with a program, those definitions are placed in a still lower level (i.e., 3 or beyond).
In each of the programs a simple ordering of the program steps is preserved. Each
element of the structure is to be executed once, in the order specified, each time the
program (PROGRAM1) is executed. A trace of the flow of control during execution
of the two levels of programs is shown in Figure 2.4.

UlllilillMlani■ - • ■■ --• -J-..„...^..^,M,.m—.■.,.,.» ^—. •-'"■in iiiiiiiiiniiiiimMiiüirittiii

"H

LEVEL1: begin
comment outermost level;

PROGRAM1: begin
comment performs problem solution;

PE1;
comment performs SUBTASK1 by causing the

execution of the program (PE1) defined
in LEVEL2;

PE2;
comment performs SUBTASK2 by causing the

execution of the program (PE2) defined
in LEVEL2;

end PROGRAM1;
end LEVEL1;

LEVEL2: begin
comment specifies programs referred to in LEVEL1;

PE1:
comment

end PE1;
PE2:
comment

performs functions identified as SUBTASK1 when
executed;
PE3;
comment performs SUBTASK1.1;

PE4;
comment performs SUBTASK1.2;

begin
performs functions identified as SUBTASK2 when
executed;
PE5;
comment
PE6;
comment
PE7;
comment

performs SUBTASK2.1;

performs SUBTASK2.2;

performs SUBTASK2.3;

end PE2;
end LEVEL2;

Figure 2,3. Two Level Program Text

i

ttiluMiiiMililAlHMiiM ^■■i-- .-...^-^^-.■.^-J—^..J

^^^—^——^^^ ' i-JL.... ■-■ r=^^^^^^^^^^^^B!==gr~ ■ .■■-IPI

Enter PROGRAMl

PROGRAM1, .Step 1

Enter PE1

PE1, Step 1

Enter PE3

EXIT PE3

PE1, Step 2

Enter PE4

EXIT PE-l

EXIT PE1

PROGRAMl, Step 2

Enter PE2

PE2, Step 1

Enter PE5

EXIT PE5

PE2, Step 2

Enter PE6

EXIT PE6

PE2, Step 3

Enter PE7

EXIT PE7

EXIT PE2

EXIT PROGRAMl

Figure 2.4. Trace of Control for Execution of PROGRAMl

10

 -- - - . - ■- ' - - -- - - . - . ..^ _...., „^u^^MMMa^BMMtom

»^"" ^■■^p—

The extremely simple relationships shown in this sample problem are not
truly representative of those found in the "real" world. The layers of decomposiUon
in this problem map precisely into the levels of the program organization. This is
unusual No provision is made in the example for the recurrence of the same subtask
at different points in the problem. To ignore this is impractical. Common subtasks
can often be performed by a single program or program element.

The sample program does show something about the way that PE's are defined,
by other PE's at a lower level. The discipline of assigning definitions to lower levels
is part of a consistent policy of using only forward references in the program text.
The only instance when control is returned to a higher level is when the execution of
a program at a lower level is completed. Control then passes back to the calling PE
at the higher level. This discipline eliminates a potential cause of obscure circular
deümtS and dependencies among program elements. Further, it allows testing to
be built up from the bottom. The behavior of PE's, then, can be summamed into a
set of rules: 1) a PE is activated from and exits to a PE at a higher level (lower
numbered); 2) a PE, like all "good" programs, is executed sequentially from its
entrance at the top to its exit at the bottom; 3) a PE never communicates directly
with another PE at the same level as itself; 4) a PE performs its task by either
executing instructions or calls on other PE's. defined at a lower (higher numbered)

level.

Having reviewed the rules of discipline for PE's. the problem of handling the
recurrence of subtasks can now be addressed. If, during the program decomposition
Tsubtask recurs (i e., the decomposition yields a subtask which occurred elsewhere)
then the subtask is favorable and the PE which satisfied the earlier occurrence should
be used again. If the definition of the PE appears on the same level or ^'^.
of the program organization, it should be re-assigned to a lower level The PE defim
tLn mu^ be placed at least one level below the last reference to it in the program
organization. The re-assignment of the PE implies the re-assignment of any sub-

structure used in its definition.

To illustrate the effect on the program of factoring, it is helpful to develop an
additional decomposition of the abstract problem. This decomposition (Figure 2 5)
a^ftle resultant^EVELS program set (Figure 2.6) are done first withou factoring.
The program set (LEVELS) is appended to the previous levels (Figure 2.3) This
^am set uses a new PE for each subtask. The numbers in the PE labels are used
Xto indicate uniqueness. An alternate program or^.tion^^^en
developed on the premise that SUBTASK2.2.2 is the same as SUBTASK1.2. When
the SUBTASK2 2 is translated into a program element in the LEVEL3 structure.
SUBTASK2 2.2 is carried out using PE4. The definition of PE4 which occurs on
LEVEL3 in Figure 2. 6 is moved to the newly created LEVEL4, in Figure 2^
LEVEL4 is retired to provide a lower level position for the program which defines
PE4. since it is called in LEVEL3. From this it can be seen that the program

11

..... ..^ ^ ^. ..-^.^.-■■^..^..^-.^X^^

^m

1 1 1
1 1 1

CO

1 1
1 1

CO

IN

1
1 1 • ' 1

1
|

1
1

1
<N

CM

CM
1 1 1

(N 1 1
. 1

-1— —1— r-t

CM

«3

1 1

1

1

|

1
1

1
1

iH

CM'
CO

1
1

■

CM
CO

CM

CM
CO w

i
—t—'

i i
i i
i i i

>H

CM
CO

i
i i
i i

* \ (Ml

* 1 b I
■

1 « 1 1
J 1 J 1

1 1

n
CM'

CO
1
1

1
1

CXI
•
H
CO

1
•

CM

rH
CO

1 1
1
1
1

I
1
1

1 1 iH

CM*

»H
CO CO

1 1
1 1

■ ■
■ « •
i 1 1
i 1 1 CM

rH

rH
CO

■ i 1

i i

rH
03

|
i i 1

I
■ ■

rH

rH

rH
to

■ i 1
i i i
i i i

eo
u

N3

CO

9
SI

1
Ü
•l-l I
m

CO

§

s o
Ü
V
Q
£

o

u
T3 E
O
•a E

CM

CO

§

12

- ^ ■ .*^u*.^^ ^.^.^^..^■.^^^^a^^.^.^.^^.,,^^..-^^,;...^:^.
■ nf I ■■!-»■! ■ ■' "

■Si

■

c I

a:
■n
<

5

E I
1 1

- 6 M C

si si
i

.. E

E I

2

5

■
"8

I I
-a

1 a 1
0) 01 V

B 9 S M E
E
o
o a! si

-r □
U 11

E c

1 S
0

Hi u. u

u E

<

m CM

s 2 M
^ IS

i
tn w '/J

< < < i
H H f- c
C a B
J s 5 i
y 75 '/; i
■/. »1

e c '_- u E 0
a o 0

t f t 11 1 % 1

5
a

&
a
E

a
CO

?
■r
ir.
E E
«

■
t^- E
M E

g
.. E
w I

10
U4
E

to <

n
■
1
B

■a

E
.. E
w 5

2

s
E 6 t I

5

B

I

el^ i" E

u
E

"a

be I
§
tu
O

g
4 M U ed •• to

'S
H CD (S > A P b ■Q
w CD to CO B
J T3 a ■ 3
a B £ E

C §

1 1 1
a

1
&

U 11
u
|

X

s
E

a o

D
X
1) 1

.. E 1 n o
rm

s
n

ex
ec

IN

■
E 1 \ XI i i gg

1*1
X & s 2
s a .- +-* o a c fH a

g a '3
8

.. E s .. E
T) 1 i ■o M |
Sw J{ s i S 8

•J
H
> 31
►J M |

1 |l S J s

CO

<
H
CO
5
CO

I
.. E

in c
w 5

g g

i I I I
^ n 8 a>

•- 1 .. E

g 1 si
CM
w a,

I
w
►J

II

s
s

CO

W
>
w

CM

|

13

MBi '—■ tnii iraihiriMWiiiiiiiimitffirriiifil

■■

5 ..

■c
l

•a

<

5

o t
I &

§ 1 P 4)
c c
0/ B

c 0 n S ■T 6 in E
a 1 RHi Si 2 E

g 8

!
.. E

Si 1

PJ ^ ^ i ;<:
■r. ■r

[5
a
5 i

2
5

73 li •Ai
n -o ■
e B p

0 la
o 0
t 5 t

& &

I
to -C
C 73
5 2 o H

•g f?
CO

2 | € p a *

b
eg

in

p
er

fo

P
E

K
i

co
m

m

- §

si

M
<
H
CD

%

tu
■a

M u-
7) v.
< <
H H
5 F

3 £

1 a K
til „ m
E c c p B B

c o i'- E £ E

p
e
rf

P

E
l

co
m

c
D

.. E
w 5

CO

s
•D
C U

w

61

>
u

3J!

w 2

.5 I
0)

O t-

2 hi

'SB«

K a um'*
g 5 o
a c .

3 it
c «
O >H
-/ bC

2 o,

3 1
> I
J o
w o

™ c

C Ä
O

(0

7.

s
7.

8
•t3 ..
— C-J

Is
E «
U —
O 73

8.1

•Ij

t
CG

GO

S c
0

^ X
1/1 7
< <
h H
r pQ
/. »3
DB '/.
E a
c B
o Q

«
& *

*-< B c
ii/ | tu s H E N 6
g
0
u if si

a. o
— X!

c
9

£ w
a. P.

UJ

tul^.

t
ä

5 2
73 73

G < <
8 H H

3 g s
O 73 73
« ■ tn

c E 8
L G
0 0

Q

X t
& 8.

M
c B
4) B

o 5 .. E .. E ft si M 1 e 1 P« o s >

«1 *
§ 3 «
C K 4)

c Cog
IK m 0/
Xll 0 ^ o

11
NJ 4)

P Fl
> E
-j o

og
C3 M

IB
73
<

a h
aj

|j ^J « w
■0

c E
o L.

Is o

a ^5 £

E >< B 8 4)

BIO c - E
■sjt £ ^ S
xil a S ß< ü

73

g

.p °

g
.. E

a §

w

►J Ji X
w ■5 <
> H w u n P4 CM
NJ L) 5
B |

41 •—'
O n 5 X
a

| 1
73

2
73

u
A) «' i s s
£ 11 1 73

■
03

g a c ^ E

1 -1
0

1 0
B

1-

a B - 1
£3

E B

5 s 1 E 4)
B -'

c
G

•- E
4)

.- E
c ■a t 00 c

si
05 |

B If'r1 01
X! &

■ 12
ta O
rij • QÜ

CM

S c

4) > I B
4)

E
■n a to CO F
B 4) ■P ■~ u 0
41 tN X 0 a S

HJ
UI
> CO t w M a

1 w o
V o

S
1

14

Hta^_ ^UltJliaciBUiidÜiMA >-Ma^a^U^riA^H^^uu ..■„^.„^^-^■^^^a^iri^.Waä^*- .■^J»>da.^i.,^i,..^afH-^

organization, in levels, is not necessarily identical to the problem decomposition
of Figure 2.5. A program element (PE) can be referenced anywhere, at any level
in the program organization that meets the one restriction: the definition of the PE
must occur at a lower level (higher number) than any of its "calls".

The freedom to assign program element definitions to appropriate levels of
the program structure can be helpful in increasing the understandability of a program
text. Elements which pertain to similar or related aspects of the problem can be
collected into a single level as long as they do not refer to each other. Thus the
levels are used to further isolate the parts of the problem to specific areas of the
program text.

Before presenting the possible variants on the simple ordering control struc-
ture that can be used, it is worthwhile to re-state the relationship between a subtask
(derived from the decomposition of the problem) and its companion program element.
The subtask is a statement of the net effect to be achieved by the execution of the
program element. Therefore, the subtask is the criteria for evaluating the appro-
priateness or correctness of the output of the program element.

All subtasks do not decompose readily into a short, determinant sequence
of smaller tasks, as shown in the abstract problem above. Sometimes a problem
decomposes into a number of repetitions of the same subtask. An example of this
kind of decomposition can be seen at the outermost level of the problem used in
this study. When this happens, a repetition control construct can be used to express
the decomposition. The net effect of the repetition of a program element can be
readily identified (e.g., determine the square root of a number or run the appro-
priate number of simulations). This net effect can then be treated as a sequential
element in the problem decomposition process. The problem may not have been
decomposed in such a way that the effect noted already appears as a subtask.

It was indicated earlier, however, that in the interest of clarity of the program
text, the partitioning of the program and the problem is to be made along the same
boundaries Therefore, in this case, it is necessary to re-partition the problem so
that the net effect of the program implementation appears as a subtask in the decom-
position. Two forms of repetition control that preserve the isolation of the net effect
are described later in this section. (Repeat S until Condition; while Condition do S.)

Sometimes a net effect must be achieved by selecting between alternative
actions. For example: to find an element having a given key in an ordered list, the
average search time can often be shortened by starting in the middle and searching
in the appropriate direction. Or, the actions required to form the absolute value of
a real number are dependent upon the sign of the number. Thus, under certain condi-
tions of a problem, some of the steps in a program may not be executed. To meet
this need there are selection forms of the control statement. The particular forms

15

 ■.---. i II —" -'——— -■ -.,...■■- —. ...^ J

—

of the selection which preserve the net effect (if Condition then EU; if Condition
then S1 else S2; and Case i of | Sj, S2, S3, ..., ^ [) are described later in this
section. A selection statement provides another instance of the interaction between
the process of program construction and the problem decomposition process. The
net effect of the selection control must appear as a subtask in the problem decompo-
sition. If it does not, then the problem is decomposed again, at the appropriate
layer, to yield a subtask which is the net effect of the selection.

Normally the problem decomposition shapes the program organization.
However, if actions must be performed which are controlled by a mechanism other
than simple sequencing, it may be necessary to alter the program decomposition,
The altered decomposition should contain subtasks which match the program organi-
zation. One of the subtasks should be the net effect of the program element which
uses the non-sequential control mechanism for implementation.

Programs constructed of levels, as illustrated in the abstract problem
solution, can be thought of as being a nested set of abstract machines. The machine
at LEVEL1 can be thought of as having two (2) instructions, PE1 and PE2. To solve
the problem, a program is written for this machine. This program establishes a
sequence of the available instructions to achieve a solution to the problem. This
program is named PROGRAMl. Other machines can be considered to exist for
levels 2, 3 and 4. The machine at LEVEL2 has a five instruction repertoire.
The instructions are named: PE3, PE4, PE5, PE6 and PE7. There are two pro-
grams currently written for this machine. They are named PE1 and PE2. These
programs written for the second level machine provide a meaning to the instructions
of the first level machine. When these two abstract machines, each with its own
instruction counter and space, are connected, they act as a single machine. When
they are connected and a program written for the machine LEVEL1 is executed, both
machines are used. The mechanism connecting the various levels of the program
can be illustrated by following the execution of the program in this abstract machine
organization.

When the program (PROGRAMl) is activated, the instruction pointer for the
machine LEVEL1 points to the first instruction of the program. The instruction,
PE1, is selected and recognized. Machine LEVEL2 is activated to define the instruc-
tion by executing the program PE1. At this time, the instruction pointer of the machine
LEVEL2 is set to step 1 of the program PE1, and the instruction PE3 is recognized and
executed. After the instruction pointer is stepped, the instruction PE4 is executed.
When the instruction pointer is stepped the next time, the end of the program is
recognized. The termination of the program in LEVEL2 reactivates the machine
LEVEL1. The result of the execution of PE1 is made available to LEVEL1. The
machine LEVEL1 increments its instruction pointer to the next instruction. Again,
when the instruction is recognized, the next lower level machine, LEVEL2, is
activated. This process, in which the two machines work in lock step, is continued

16

 -'- ^ -—' "—'—-—

m^mmmmm ^r mm^mmimmm "^

until the higher level machiiie, LEVEL1, has completed its program. A lower level
machine is activated anytime the machine executing the program cannot execute the
instruction. Whenever a machine must go to a lower level machine for service, the
higher level machine suspends itself and waits until it receives a response.

When program levels are thought of as abstract machines, attention is called
to the blend of dependence and independence that exists between the levels. Each of
the levels can be thought of as a building block which is itself built of building blocks
formed by the lower levels. An approach to the testing of programs is suggested by
this building block approach. The lowest level building blocks can be tested and
logically validated as independent units. As the lower level units are validated, they
are then combined to form the next higher level machine. The programs which are
written for each machine define the instruction sets of higher level machines. Thus
the validation of the program for any machine confirms the correctness of instructions
for a higher (lower number) machine. This approach to testing has been described
for an operating system by Dijkstra. 16

An abstract problem has been used as an example in this discussion of some
of the basic concepts of Structured Programming. The notions of sequential program
construction, building block program organization and top-down program construction
(based upon top-down problem decomposition), have all been discussed. Other basic
concepts are not easily demonstrated from the abstract model. These concepts relate
to the order in which some aspects of program composition should take place and also
to the size of the program units developed.

Throughout this discussion, emphasis has been placed on the use of a restricted
set of control structures to organize the programs. Experience has shown that a signif-
icant number of program errors originate in the control structure. Often the right
actions are performed, but the wrong number of times or at the wrong time. This
observation has led to a conclusion: the control structure should be isolated from the
actions controlled, insofar as possible. In practice this is accomplished partially
through the mechanisms of procedure calls, or "program stubs". I' These stubs
indicate the position of an action in the program execution sequence without the
necessity to include the details of how it is done. Through the use of this device,
the definition of the control structure is given a priority in the order of development
over the refinement of the actions being performed.

Deferral of the specification of data representation forms is another of the
basic concepts which are helpful in building readable programs. The net effect of
the deferral of these program details (actions and data representations) is to isolate
the control structure of the program and make it highly visible to the reader of the
program text. Isolation of the control from the action appears also to increase both
the generality of the program and the evolution of factorable subtasks.

17

maätMmim jttittmiki^immmiimt^tmtttm —"■' -""•'■"■

--'JW'

There is no absolute answer to the question of a most appropriate size for
program elements. One of the basic premises of the work in Structured Programming
has been man's inability to perceive clearly any program that is not small.18 Various
writers have attempted to offer fixed criteria for the size of a program element. The
general criteria being proposed is the amount of code that will fit on an 8^ x 11 page,
or roughly 50 statements.1^ Possibly this is a reasonable upper limit. It is clear
that the degree of perception attained is a function of the complexity of the control
structure used in the page. Complex control structures in conjunction with complex
arithmetic expressions can easily make even a single page incomprehensible.

The ultimate criteria for the size of a program element must lead to a "com-
pletely readable program" text since this is the basis for assertions about the validity
of the program. A criteria which relates closely to the content of the page is more
appropriate. Perhaps it could be phrased as, "include only as much elaboration as
can be grasped and understood in a single reading of the code. "

Any aids to readability available through the programming language should be
used. Thus comments, indentation of lines and subroutines, together with judicious
naming of identifiers, are all incorporated into a well structured program.

It is clear that some languages, such as Algol and PL/l, offer more facilities
for improving readability than others. In addition to the appropriate control structures,
these languages have an inherent block structure that facilitates the organization of the
text to reflect the problem decomposition. The wide support given to PL/1 by IBM
makes it reasonable to expect that ii will be the dominant language for Structured
Programming. The basic concepts of Structured Programming are applicable,
however, regardless of the language chosen.

4. PRINCIPLES OF STRUCTURED PROGRAMMING

The basic concepts discussed in the earlier part of this section can be
formulated as a set of principles for use in doing Structured Programming. As the
practice of Structured Programming spreads it is expected that other principles will
be formulated. These principles are a first set and are useful in developing and
testing the technique of using Structured Programming. The principles can be applied
to the production of correct and understandable code for all problems. The text of
those programs developed according to these principles will support either a con-
vincing demonstration of correctness or an analytical detection of their error. The
principles are:

• Develop programs from the "top-down", in a
way which reflects a top-down decomposition
of the problem to be solved.

18

— ■■ ' -■- ■•'- -■■ -—■■•■ ■ I m - - - —__^ ^^ ■ I MI miMihutfi niM^ ! ■■! r fcn i

• Organize the program into distinct levels
forming an ordered series of intermediate
systems of programs.

• Develop the program as a simple sequence
of calls on other programs or statements in
a computer language, using only those control
structures thet preserve the effect of this simple
sequence.

• Defer the development of program details until
after the control structures are developed.

• Defer decisions about data representation as
long as possible.

Each of these principles is discussed in detail below. The examples in
the discussion are drawn from the test problem used in the study, the simulation
of the DEC PDP-11.*

a. Principle #1. Develop programs from the "top-down" in a way
which reflects a "top-down" decomposition of the problem to be
solved.

This principle is the basis for an orderly development of an entire program.
It is also the basis for establishing a well-defined relationship between the problem
and the execution of the program.

Most problems have a natural focal point, the point the designer considers
to be the "heart" of the problem. In the case of the simulation of a computer, the
focal point is the processing of an instruction. This is a traditional starting point
for the composition of a program to do simulation. It is natural for a programmer
to start to outline a program for the test problem as follows:

1. Fetch next instruction;

2. Decode instruction;

3. Execute instruction.

* Digital Equipment Company.

19

 -.. - — ■a^MMMtii^^^^MMd

T^^amm memm

Following this outline, the details about instruction fetching and about ^ch of the
Iher sups ar. filled 'in. Attempts are then made to encode the co^rol de^aüs
reouired for proper operation, generally working from the inside-out^ This
^II s^encJThen^tarts in the middle of the program and works down and

then returns to the middle and works up.

The oroper starting point for "top-down" program construction is a general

SÄSS. ^rfSS^-«- of «he probU*,. and tMs proems
is the fundamental operation of Stmctured ProBrammiog.

Stated almply. the problem need in .hie study ia: "Run as many ******
of the PDP-ll aa a uaer wants." This problem is read.ly apee.fed as a f.mte
„ mbef of executions of a aintfe task. The tash being repea^d eons.sto two
«te^ or subtasks The performance of a single simulation nm .s the first step m
the^elnti he second^ubtask involves the translation of the uaer-a needs into a

and the proper termination of the sequence, then a complete specificat^n of the
problem solution is formed. Tins specification is given in Figure 2.8.

PDP11SIM: begin
boolean Stop;
repeat begin

SIMPROG;
QUERYUSER (Stop);
end;

until Stop;
end PDP11SIM;

The program
the simulator

Figure 2.8. A First Program for Simulations

presented is the first program of a "top-down" implementation of

Similar 'top-down" program construction is applied to each of the small
problemsTdlified'by the p^gram stubs. As each of the program constructs i.

20

MMHMMIMtM •«MaMB*MIM - UMH ■- ■-- ^

formulated, new, smaller problems are identified. This process is carried on until
the problems are specified either by existent programs or by programs composed
of executable computer instructions.

The problem represented by the program SIM PROG (inside PDP11SIM) is:
"Perform a single simulation of the PÜP-11." Any simulation can be partitioned
into a sequence of three (3) subtasks:

1. Initialize the simulation;

2. Perform the simulation;

3. Clean up after the simulation.

If each of these tasks were performed by the programs INITSIM, RUNS1M, and
CLEANUPSIM, respectively, then a program can be constructed which will specify
the meaning of S1MPROG. This program is shown in Figure 2.9.

SIM PROG: begin
integer Cyclellmit;
INITSIM (Cyclelimit);
RUNSIM (Cyclelimit);
CLEANUPSIM;
end SIMPROG;

Figure 2.9. A Program to Perform a Simulation

The program presented in Figure 2. 9 can be incorporated into the earlier
program (Figure 2. 8) to form a single program. In the Algol-like language being
used for the implementation, this incorporation can be done while still preserving
the identify of SIMPROG and the hierarchical ordering between the programs. See
Figure 2.10 for the result of the combination.

Starting from the "outermost" statement of the problem, the required con-
trols and the user interfaces are developed as an integrated part of the program.
This is in contrast to the "ad hoc" controls and user interfaces that often occur
when programs are constructed from other starting points in the problem.

The decomposition of the problem can be presented as a "tree of decomposi-
tion. " Figure 2.11 presents a five (5) layer decomposition of the problem of the
PDP-11 simulation. Each of the layers is formed by the decomposition of a problem

specified in the preceding layer.

21

PDP11SIM: begin
comment establish iterative control to allow repetition of simulator for

multiple runs;

boolean

repeat

until Stop;

Stop;

begin

SIMPROG:
comment

integer

begin
perform a single simulation run;

Cyclelimit;
comment supplied by user to limit the number of
~ machine cycles executed;

INITSIM (Cyclelimit);
comment initialize simulator to appropriate I/O and memory

configuration. Get value for Cyclelimit, let user

load peripheral files;

RUNSIM (Cyclelimit);
comment perform a run on simulated machine. Use Cyclelimit

to control against infinite loop in user program;

CLEANUPSIM;
comment cleanup any residual I/O left when RUNSIM quit;

end SIMPROG;

QUERYUSER (Stop);
comment talk to user and find out if should go again;

end;

comment end of controlled loop for repeated simulations;

end PDP11SIM;

Figure 2.10. Text of PDPllSIM

22

- -■ - iin liriiMiiiaaiiiiihiliiiMir"--' •■-^'«"^•-'

jL,m«UJj, .._:

, 1 ■
X

E
A

M c
1 R
1 s

3'

M - <
a

hi X

U >•
L

K
w

3
2.
B
2

*— 1

s

o
a,

c
o

»3
o
a
S
o
o

Q
h
QJ

E I

23

■•■- -■'—'-- --" -''- i ^Imltmämmmmm

• 1IIHP—„J..!..- - .J.i.-U,l i ^OTF^Jl"! N, i

The application of a "top-down" approach to the design of the program does
not eliminate the need for re-adjustment to the design. Iterations in the design
will occur because alterations to previous work are required These alterations
are caused by decompositions which lead to awkward or incorrect program constructs.
These alterations may sometimes require backing up the "tree of decomposition" to
higher layers to make changes. The "tree" is often helpful in identifying all of the
areas of impact for the alterations. When a new tree and program is built, the
decomposition can be continued. The result is usually a program which is a better
fit to both the problem and the solution environment. Thus, although the progress
toward the ultimate expression of the program is not always uniformly a descending
process, it results in a program with a top-down organization.

b. Principle #2. Organize the program into distinct levels forming
an ordered series of intermediate systems of programs.

When ? program is composed to reflect a "top-down" decomposition of a
problem, it is generally built of a control structure and a series of "calls" or
stubs for other programs. For example, the program PDP11SIM (Figure 2.8)
contains entry points into two programs, SIMPROG and QUERYUSER. The program
SIMPROG (Figure 2. 9) is defined by a new program composed of a sequence of three
program calls.

This formation of intermediate systems of programs can be repeated to a
great depth for a large problem. The arrangement of these programs in the text
in an orderly way can present a problem. Obviously, all of them cannot be incor-
porated into the body of the text if the program is to be readable. In the case of
SIMPROG, it was incorporated into the text of PDP11SIM (Figure 2.10) because it
was convenient to do so in the Algol-like language. This incorporation is reasonable
if: 1) there is no loss of the structural relationships; 2) a simple control structure
can be maintained; 3) the generality of the program is preserved; and 4) the "small"
size of the program is preserved.

The readability of the program text is improved, hov/ever, if these programs
are organized into levels which are clearly demarcated in the text. These levels
are ordered inversely to their indices, with LEVEL1 the highest level of the program.
LEVEL1 always contains one program, which specifies the solution to the general
problem statement. In this case, it is PDP11SIM. This program is the entry point
for execution of the program, and appears at the start of the text. The levels appear
in the text according to their order, together with a notation of any particular signifi-
cance attached to the level. An outline of the textual organization of the levels in a
program text is given in Figure 2.12.

24

fttmm^tMtmmi^ - -

wmimmm ——■ ww^Km*^^m ±*m^^.'*j£Tm~~~mm^*^!m~m

LEVEL1: begin
comment program at this level is the entry point to controls or specifies

the total simulation program, providing multiple runs to the user;
PDP11SIM: begin

end PDP11SIM;
end LEVEL1;

LEVEL2: begin
comment this level contains the programs to carry out the tasks of the first

level decomposition of a single simulation problem;
IN1TSIM: begin

end INITSIM;

RUNSIM: begin

end RUNSIM;

CLEANUPSIM: begin

end CLEANUPSIM;
end LEVEL2;

LEVELS: begin

end LEVELS;

Figure 2.12. Level Designations in the Program Text

25

 ■- " - - - - J

—

The level to which a program is actually assigned is at the discretion of the
programmer. In the example shown in Figure 2.12, LEVEL2 is restricted to pro-
grams which deal directly with the performance of a single simulation run. At a
lower level in the program organization there is a level dedicated to programs
which simulate the effect of PDP-11 machine instructions. Below this is a level
which supports these instructions. In this support level, the programs have the
effect of performing the logical operations used to define the simulated instructions.
This use of the levels in the text to isolate the program elements so as to form levels
of abstraction of the problem adds both generality and adaptability to the program.

There is a limitation on the programmer's freedom in the assignment of
programs to levels. Common programs, those used in more than one place, appear
only once in the program text at a level which is at least one level below the lowest
reference to it. In Figure 2.11 there are two (2) subtasks, DISPLA2USR and USRBACK,
which appear in several places in the tree. They are elements of QUERYUSER, LIMIT-
CYCLE, MEMINIT, IOINIT, and IOLOAD. Based upon the tree as shown, the earliest
level at which the programs to perform the subtasks could be placed is below the lowest
of these.

The only well-defined criteria for organizing the sub-programs into levels is
the matter of interprogram reference (no program on any level may include a refer-
ence to a program on the same or a higher level). * The creative use of levels as
aids in program organization is very much a function of the individual programmer.

c. Principle #3. Develop the program as a simple sequence of calls
on other programs or statements in a computer language, using
only those control structures that preserve the effect of this simple
sequence.

In his paper, Dijkstra proposed three kinds of program sequencing constructs
(forms) that have the property of providing a beginning-to-end control flow. These
are:

1) simple sequencing, represented by the concatena-
tion of statements;

2) iteration, represented by the forms

while condition do statement

repeat statement until condition;

* For discussion of the reasons for this, see Section II, page

26

-■ - - J.--.. .—.^—.^-.-^ ^ .^ -..■_■ ..- . ..__--- - ..^ .._ . ._. .. .„^--L----*■*••"•■*

r Jl .il «..I.-^^JIJIJI.,,!..

3) selection, represented by the forms

if condition then statement

if condition then statement, else
statement

case i of | statement 1, statement 2, . ..
statement n|

In these forms, it is important to understand that the statement, S, stands for one
statement or a group of statements which, in their effect, act as a single statement.
Languages such as Algol 60 and PL/l use the words begin and end to act as brackets
surrounding a group of statements that are treated (in their effect) as a single state-
ment. Such statement groupings are also called compound statements. These
sequencing forms have the property of one path in and one path out, as is shown in
the following examples given in both flow chart and program form. In the examples,
S stands for any statement, C stands for any condition and i is an integer number.
Subscripts, if present, designate individual statements.

1) Simple Sequencing

Program form: S^; Sg; .

Flow chart:

2) Iteration

r
T

Program forms: (a) while C do S;

(b) repeat S until C;

Flow charts:

(a)

—vh
T

kij—i
 4--.

(b) r-"-^*! - i
i

i s '
i

i ,W :
K c

'_ "rxTT..1

27

M iri.iii--iirrriitt[w

3 ^^— wmmmmmmm^m-^,'

(a)

3) Selection

Program forms: (a) if C then S;

(b) if C then S! else S2;

(c) case i of {Sj, S2, Sn};

Flow charts:

(b)

r 7 '

! ic ^ :
I T i

i ^ 1
1

! t 1

H ' ' In 1
1

yf A, i nr S2 1

\ i -j. rf- <
1

^

(c)

1 > r
1 i

j, f vl ' m q . i •••• i8«! ;
i *

~ >

i
1

The dashed boxes around the statement flow charts are meant to emphasize the fact
that the sequencing construct is treated as a unit.

Two programs developed as part of the PDP-11 simulation effort illustrate
this principle. Figure 2.13 shows a flow diagram for the program PDP11SIM (Figure
2.10). The program can be considered to consist of a single statement which repeats
a compound statement. When the program PDP11SIM is activated, the instruction
counter for this outer level program is set to point to this single statement; when it
steps past it, the program is over. Progressing inward, the compound statement,

28

- _■

täMm

PDP11SIM

be Kin

end PDP11SIM

'vi NTEH

S1MPR0G
begin

.endSIMPROG

No
STOP?

Yes

EXIT

Figure 2.13. Flow Diagram for the Program PDP11SIM

29

- ■ ■'■—~-'-"-'---~*--
^-dM^M-J^.»...,.^..,^.-^...^.,.. ■■...,- - ...v.^...,^ -

»WP«^^W

named SIMPHOG. consists of three program "calls" enclosed m the bracke s
bei and end This compound statement illustrates a simple ordenng of sta e-
Ss Itfio illustrates again the use of a simple sequence as a -^e entrty,
Tr SIMPROG is itself made up of a sequence of three program calls or stubs.

Flgure 2.14 shows a more complex combination of the control structures
which still preserves the sequential ordering of a program, RUNSIM The text
If the program. Figure 2.15, shows the use of the control structures.

d. Principle H. Develop the control structures before the develop-
ment of other program details.

An examination of the text of the two programs, PDP11S1M and RUNSIM
^ toTHnd 2 15) used to illustrate the earlier principles shows the general

from control of the simulator through the control of the cycling of the simulated

machine.

Before any of the details of the PDP-11 actually enter into the Program
the sequencTngTontrols for the first four levels of the program are fully developed.
I^tilTe program FINDFORMAT is composed at LEVEL5 of the program, the
simulation could be of an IBM 360 or any other computer.

The actual details of how the programs which give meaning to the stubs
operate are deferred until the control structure is well developed.

e. Principle #5. Defer decisions about data representation and
other details as long as possible.

This principle is also difficult to illustrate, since it too ^f^0^^

Uons, memory, or any other aspect of the target machine until the fifth level

the program.

In deciding about data for the PDP-11 aimnlatlon. it !• clear that the inatrac-
tione for thnSatcd machine wiU have to be avaUaHe for the part of the program

30

 — - ■ ■ - , — _.

—- . j-^nmueE _ ■_ m-twrnm^mm^*^^***!^^^™**

RUNSIM

INSTRUCT
ENABLE

CONSOLE

IIALTINST
F

Enable: = false

Cyclecnt: =
Cyclecnt + 1

Cyclecnt >
Cvclelimit

Go: = false

-IMfi. =3!:
noo

~lHalt^s(Con-
tinue \/Start)

Enable: = true

\Emy

Figure 2.14. Flow Diagram for the Program RUNSIM

31

^■.■■...^^.^^^■i-^^g^.. irr-'11----^--—ttiitrniiifiTiimi'niitiiiinn ^ä^-^i^AM^ ^^... .„*':..■:

mmm

RUNSIM (Cyclelimit): begin
comment control a simulation run. A run is repeated execution of console or

instruction cycles. A run is terminated by exceeding the Cyclelimit
or by direction of the user;

boolean Enable: false; Halt: true; üo: true;

integer Cyclecnt: = 0;

repeat begin
comment provide connecting link between the two kinds of cycles,

as long as (Jo is true;

if Enable then

else

end;

until -~|Go;

end RUNSIM;

INSTRUCT:

boolean

begin

Haltinst: false;

INSTRUCTNHNDLR (Haltinst);

if Haltinst then Enable: = false
Cyclecnt: = Cyclecnt + 1;

if (Cyclecnt > Cyclelimit) then Go:

end INSTRUCT;

false;

CONSOLE:

boolean

begin

Continue: = false; Start: = false;

CONSOLEHNDLR (Halt, Continue, Start, Go);

Jf flHalt /% (Continue \/Start) then Enable: = true;

end CONSOLE;

Figure 2.15. Text of RUNSIM

32

 ^■.^..- --^iin.W,.TytOtiitf"'-—-•-■'■"■' ■^*^**~iJ*****~*±***.*,*~~~^~.: -■*■'-' .—i>*..^V. .-n.^^.~A.-.L^.:^^ifefl nil 11 rtn Hur—-'"1 ■ ---^'" -'-■- -^ J

..«.-Mi. ' ■ ,L/1 - -' ' ■ - •■

that executes the instruction cycle. It is equally clear, however, that the instructions
being simulated must be entered or read as data outside of this function.

Since the data for the simulation is entered as a separate step, and must also
be accessible to the step that simulates the machine, storage for that data must be
reserved outside of the scope of either step. In keeping with the concept of abstract
machines, a program at a very low level, used by both branches of the program
organization, handles the data representation and the space. In this study, the
Algol own array construct is used to control the scope of access to the variable.
Thus the need for data can be recognized at the point where it is required without
necessarily defining in detail how it is to be represented. In the specific example
of PDP-11 instructions, it is necessary to recognize their existence at the point
where they would be entered as data. The decision on how to represent PDP-11
memory words in the simulator can be put off to the point where this information
is needed to continue program development (e. g., in the simulated instruction
processing). At this point one can determine the kind of machine the simulator is
to run on and determine whether it is possible to represent the PDP-11 memory as
one word per word of the host machine, or whether a packed form of two words per
word of host machine memory is needed.

33

„.^.-......,-_ ^..,.-...~.„......-.,.. ■.„■...-. ■—- — . .- „a,mt„.^J»«M.aJ.UM»J«-...J

1

SECTION in

APPLICATION OF THE PRINCIPLES OF STRUCTURED PROGRAMMING

INTRODUCTION

A program was written to demonstrate and evaluate the use of Structured
Programming, The problem used for the demonstration was selected on the basis
of three criteria: the problem had to be large enough to provide an adequate test
of the use of Structured Programming; it had to be small enough to be reaiizabie
within the constraints of the study effort; the essence of the problem had to be
familiar to the investigator to avoid distractions from the approach taken to the
program.

2. TEST PROBLEM

The problem selected for use in the study of Structured Programming was:
"Build an interpreter for the DEC PDP-11."

The control structure for an interpreter, with its continuous operation, is
deemed to be more appropriate to the avionics environment than the sequential
problems that have appeared in the literature to date. The problem models, in a
simple way, a control environment involving continuous operation, data generated
internally or acquired by "sensing" its environment, and the selection of certain
actions based on an analysis of the data. In addition, it meets the three criteria
enumerated above.

A further interest in the problem is based on the potential use of simulators
in microprogrammed processors for avionics systems. This problem involved inter-
pretative execution of programs similar to that done for emulation, and could serve
as a model for emulator design.

The PDP-11 is a 16 bit binary computer. A variable length instruction
format is used to provide optional zero, one and two operand addressing. Multiple
modes of addressing are provided with optional direct and indirect addressing.
Indexing of operand addresses is provided together with an option for automatic
incrementing and decrimenting of the index. Seven general registers are provided
for use by the programmer. In addition to the variable length of the instructions,
there is also a variable format for the instructions which provides for an expanded
set of instructions. Input-Output operations are controlled through registers that
are within the normal address space of the machine. The control of peripherals

34

— -

SBHH0H1H

involves two registers, one for data and one for the status of the device. The status
words are used to direct the input-output operation. These registers may be used
as operands with any of the instructions. Specific details of the machine operation
are available from Digital Equipment Company. 20

3. THE PROGRAM

The program is designed for execution from a remote terminal of a time-
sharing system. Facilities of the time-sharing terminal are used to simulate the
console switches of the PDP-11. Detailed internal timing aspects of the bus
actions and I/O interfaces are not maintained; however, simulated I/O operations
are activated and controlled through program accesses to related addresses in the
simulated memory. The operations are carried out as movements between the
simulated memory and file space in the host machine. The files are filled from
the terminal if the file is empty and input is required by the program.

Program loading into the simulated memory is carried out either through
the simulated console actions or through the execution of the PDP-11 bootstrap
loader on the simulated machine. Other software aids must be provided in a
similar manner.

The simulator maintains a cycle count and limit as a protection against
the occurrence of an infinite loop in a program being interpreted. The user is
given the capability to specify both the memory size and the I/O device compliment.

•

a. Program Text and Flow Diagrams

The programs presented here are a subset of the programs developed in
composing a program to illustrate the principles of Structured Programming.
These principles are followed in the program construction. The text for the
program begins at the level which contains a single program, PDPHSIM. This
program is the entry point into the simulation and is a functional specification
for the operation of the system. The program is constructed of a set of controls
used to organize the activation of other programs, represented by stubs or
program "calls. " These programs correspond to the subtasks identified during
analysis by problem decomposition.

The program PDP11SIM is given in Figure 3.1 (flow diagram in Figure 3.2).
There are three layers of decomposition of the problem represented in this one
program. The outermost decomposition is represented programmatically by the
iteration statement

repeat begin ... end until Stop

35

—'- "-'■ ■'--•■■-- ■ —"—

»■■

PDP11SIM: begin
comment establish iterative control to allow repetition of simulator for

multiple runs;

boolean

repeat

Stop;

begin

SIMPROG:
comment

integer

begin
perform a single simulation run;

Cyclelimit;
comment supplied by user to limit the number of

machine cycles executed;

INITSIM <Cyclelimit);
comment initialize simulator to appropriate I/O and memory

configuration. Get value for Cyclelimit, let user
load peripheral files;

RUNSIM (Cyclelimit);
comment perform a run on simulated machine. Use Cyclelimit

to control against infinite loop in user program;

CLEANUPSIM;
comment cleanup any residual I/O left when RUNSIM quit;

end SIMPROG;

QUERYUSER (Stop);
comment talk to user and find out if should go again;

end;

until Stop;

comment end of controlled loop for repeated simulations;

end PDP11SIM;

Figure 3.1. Text of PDPllSIM

36

 ^Jmmm .. -.........,-,.■„,—„.—,—^..^„—,^.^. - •~—-~'—^'—«-—j«

~^^imm^^**m" '

PDP11S1M

begin

end PDP11SIM

ENTER

SIM PROG
begin

JNITSIM

RUNSIM

fCLEAN-
.UPSIM,

end SIMPROG

/QUERY-
USER

No

Yes T

EXIT

Figure 3,2. Flow Diagram for the Program PDP11SIM

37

■ ■■- - ■■- - - - -■ -'■-

I

The use of the simulator can involve multiple operations of the simulation program,
possibly with different configurations of memory or I/O. Since the number of
simulations desired at any one time may vary, it is not practical to represent this
decomposition in any way except through a repetition statement. A control variable.
Stop, used to terminate the repetition is defined in the program.

The subtask controlled by the repetition is itself partitioned into two sub-
tasks identified by the programs SIMPROG and QUERYUSER. The purpose of
S1MPROG is to perform a simulation, and the purpose of QUERYUSER is to obtain
a value for Stop from the user of the program. A third layer of decomposition is
shown in the subdivision of SIMPROG into the sequential steps necessary to perform
initiation of a simulation, a simulation, and a clean-up of a simulation, respectively.

b. Second Level of Program f\^anization

The "top" level program, PDPUSIM, defers the details of the program
actions for specification in lower levd programs. PDPUSIM "^J« ^«««*
conditions under which each of the four (4) programs (INITSIM. RUNSIM, CLEAN-
UPSIM and QUERYUSER) will be activated for execution. All of these programs
are candidates for inclusion in the next level of the program organization. The
definition of the program QUERYUSER is deferred to a lower level because it is
very much dependent upon a particular installation's run time environment and
because it is very close to being "completely" defined in some languages.

The three programs placed at the second level are all derived from the
program SIMPROG, contained within PDPUSIM. These programs perform the
three subtasks required to carry out a single execution of the simulation. Of the
three programs at this level, the program RUNSIM, which actually performs the
simulation, is presented in this section.

RUNSIM as can be seen from its text (Figure 3.3). is. like PDPUSIM.
a very simple program. It also consists of the repeat of a compound statement
until a control variable. Go. has a value of false. This loop simulates the
continuous cycling of a computer. Each time the simulated computer cycles it
selects the proper task to be performed, as indicated by the state of a control
variable Enable. Whenever Enable is set to true, an instruction is processed.

If Enable is false, a console action is initiated. The nesting f^***™*™*
in the program is clearly shown in the flow diagram (Figure 3.4) The details
of the program were developed until the facilities for assigning values to Go

and Enable were specified.

38

tuaaaauBMauMMa ■ - ■
.mammtmimtmilmm

■ - - -■ - -*

wwm, _ ■"

RUNSIM (Cyclelimit): begin .. , , „„
comment control a simulation run. A run is repeated execut.on of console or
 instruction cycles. A run is terminated by exceeding the Cyclelimit

or by direction of the user;

boolean Enable: false; Halt:

integer Cyclecnt: = 0;

true; Go: =- true;

repeat begin
comment provide connecting link between the two kinds of cycles.

as long as Go is true;

if Enable then

else

end;

until "1 Go;

end RUNSIM;

INSTRUCT: begin

boolean Haltinst: = false;

INSTRUCTNHNDLR (Haltinst);

if Haltinst then Enable: - false
Cyclecnt: - Cyclecnt + 1;

if (Cyclecnt > Cyclelimit) then Go: « false;

end INSTRUCT;

CONSOLE: begin

boolean Continue: - false; Start: = false;

CONSOLEHNDLR (Halt, Continue, Start, Go);

if flHalt ^(Continue vStart) then Enable: = true;

end CONSOLE;

Figure 3.3. Text of RUNSIM

39

 -. ..— i(lli'-itili-Miiinfr'ru^-a^,b"-

1 I I1"1 '

RUNS1M

INSTRUCT

HALT1NST
F

Enable: = false

Cyclecnt: =
Cyclecnt + 1

Cyclecnt >
Cycilelimit 1
Go: = false

ENABLE
JCONSOLE

-'^MLl -*r<- T
IGo

nHalt^s(Con-
tinue V Start)

Enable: = true

\EN^

Figure 3.4. Flow Diagram for the Program RUNSIM

40

-- -"--■■ - ■-■■■■—-• "Hiiiii'-iiiriiiiiifiiiiiiifiiiliiMiit'iitiiiiiMiiiiiiiriiMiiii -^■"^'—-'■■-j ■ riiiiililliMaaiiiiliMiMittiiiriiiniiltiiiiiitiiiil'iiiiiiirlwiM ■- - '- -■^-..^..^.■.J..--

»'■WIJJI

c. INSTRUCTNHNDLR, a Third Level Program

The program INSTRUCTNHNDLR is a subtask of the program RUNSIM.
The task addressed by this program is the organization of what is often called
an iuatruction cycle. A set of subtasks are designated which, when carried out
in order, will process an instruction. The sequential organization of these tasks
is seen in the program text (Figure 3.5) and the flow diagram (Figure 3.6).

This program reflects the transition from the control of the simulation to
a closer involvement with the PDP-11 machine organization. The impact of the
hardware organization is reflected in the functions of three of the five subtasks
formulated. Often, the first phase of instruction processing is interrupt processing.
In the PDP-11 this function is performed in a slightly more general way, although
the result is the same net effect. The name ISELECT indicates the change of
emphasis from the more familiar interrupt toward the more general selection
between alternative sources for the next instruction.

Normally, an instruction is decoded after being brought to the processor.
Because of the variable instruction format and the variable number of operands
used for instructions on the PDP-11, the emphasis shifts from a decoding operation
to one of format identification. The procedure FIND FORMAT reflects this shift.
An operand fetch requirement is automatic in many computers. The conditional
execution of the subtask, OPFETCH, is a reflection of the large number of instruc-
tions which do not require normal operand processing. After the operand processing
is accomplished, the instruction can be executed by the program IXECUTE.

d, FINDFORMAT and IXECUTE - Two Fourth Level Programs

The programs used to develop the program INSTRUCTNHNDLR are all
collected into the fourth level of the program organization. Two of these pro-
grams are closely related. They are both presented here. The text of the first
of these programs, FINDFORMAT, is presented in Figure 3. 7; the flow diagram
in Figure 3.8. It is also a complex structure, set up as a sequence of three
simple operations (REMOVEBYTE, GETOPFIELD, and OPFIELD). The first
two of these operations use stubs to defer any detailing of the functions required.
The third divides the task of identifying the opcode into two parts. For those
instructions that use an extended opcode field (OP = 0), a stub (FINDONEOP), is
used to defer the specification of the processing details. Those instructions which
use only the normal opcode field for identification are decoded for illegal instruc-
tions and to separate addition and subtraction through the use of a local program
(TRY2). The name TRY2 indicates that if the instruction is valid, it will involve
two operands. Within the program TRY2 the two machine instructions, add and
subtract, are separated. These two instructions are distinguished by the state
of the byte indicator.

41

^. ,. . .„-.,..,... : .. ■„. ^.,:,.,^^.V^..^^*^a^.^.m*^l-t^^a^^

rTii„.n,«

INSTRUCTNHNDLR (Haltinst): begin
comment process a single machine instruction from the program being

pseudo executed;

boolean

integer
comment

ISELECT:
comment

Byte, Haltinst, Sub;

Source, Instruction, Destination, Adsource, Ades, J: = 0;
Instruction, Source and Destination are 6 digit octal numbers
where value is less than 216. J is an integer between 0 and 2.;

check for interrupts, if priority of interrupt exceeds that of
processor then save current instruction address and contents
of status register in stack. Set up new instruction winter and
status from interrupt vector; '

IFETCH (Instruction);
comment get instruction from memory and return it as a result;

FIND FORMAT (Instruction, Byte, J, Sub);
comment with instruction as an input, do a partial decode to determine the

number of operands required; isolate the Byte indicator in the
boolean Byte. If instruction is a subtraction set Sub to true , set
J equal to number of operands required;

if (J / 0) thenOPFETCH (Instruction, Byte, J, Source, Destination, Adsource, Ades);
comment if any operands are required, then place them in Source and/or

Destination and some effective address;

IXECUTE (Instruction, Byte, J, Sub, Source, Destination, Adsource, Ades, Haltinst);
comment perform the proper instruction and return result to storage if appro-

.— priate. If instruction is a Halt, then set Haltinst to true, else set
false.

end INSTRUCTNHNDLR;

Figure 3.5. Text of INSTRUCTNHNDLR

42

. —■-■■■--.-....■ - - — "••"■•"'-■"•'-

J

11 . ■ ■

INSTRUCTNHNDLR

Figure 3.6. Flow Diagram for Program INSTRUCTNHNDLR

43

■MHÜMÜHÜtilKill .. -. ,.,-L, r<...^^A^.. .^.

FINDFORMAT (Instruction, Byte, J, Sub): begin
comment given the instruction as input, determine the number of

operands required for the instruction, J; isolate the Byte
indicator and set the boolean Sub to indicate subtraction;
bits in the input word are numbered from high to low (15 . 0);

integer Op;

REMOVEBYTE (Instruction, Byte);
comment bit 15 indicates a byte operation; move bit 15 to Byte. Remove

bit 15 from Instruction;

GETOPFIELD (Instruction, Op);
comment

OPFIELD:
comment

move bits 14, 13, 12 into Op;

determine number of operands required;

if (Op = 0), then FINDONEOP (Instruction, Byte, J);

else

TRY2: begin
comment either double operand or illegal;

if (Op/ 7), then

LEGAL: begin

if (Op « 6), then

ADDOP: begin
comment (Op ■= 6)/N "IByte is add.

(Op = 6)/\ Byte is subtract,
if Byte, then

SUBTRACT: begin
Byte: = false
Sub: ■ true
end SUBTRACT;

end ADDOP;
J:=2;
end LEGAL;

end TRY2;
end OPFIELD;
end FINDFORMAT;

Figure 3.7. Text of FIND FORMAT

44

■ -- —».—»-—

r —

TRY2 F 1
op^ 7

LEGAL

op= 6
ADDOP
,- - - - -^- - r -i

BYTE

SUBTRACT \f
Byte: = false

Sub: = true

I
If

J: = 2

1 . V

EXIT.

Figure 3.8. Flow Diagram for the Program FIND FORMAT

45

L"---1-'•"■'-" •'•" ■'■■
........ .,..^^....^..^..... ■.._■..,.■., ,J-^-_.^ t^tiitmmmimmm __.. i ii lüiiaftii

■■■ ' """"'S ^^mmm ""

IXECUTE is the second program of the fourth level programs presented.
This is the program which actually carries out the PDP-11 instruction. A case
statement is used to separate the instructions into one of three classes of instruc-
tion: no operands, one operand and two operands.

After the instruction is performed, the result is stored into the destination
address for those instructions that require the result. The text of the program is
given in Figure 3.9 and the flow diagram in Figure 3.10.

IXECUTE (Instruction, Byte, Sub, Source, Destination, Adsource, Ades,
Haltinst): begin

comment use J values to separate the instructions according to a number
of operands. Source and Destination contain values at this point;
the only output of this program is Haltinst;

case J of { OPNONE (Instruction, Byte, Haltinst),
OPONE (Instruction, Byte, Destination),
OPTV/O (Instruction, Byte, Sub, Source, Destination)|;

Ü J ^ 0, then STORERESULT (Destination, Ades);
end IXECUTE;

Figure 3.9. Text of IXECUTE

e. LEVELS Programs

There are outstanding stubs (i.e., have not been specified with a program)
from levels 1,2,3 and 4. By choice, LEVELS programs are limited to those
stubs from LEVEL4. The program stubs for REMOVEBYTE and GETOPFIELD
are not specified at LEVELS because of their use in other programs at lower
levels. There are two sample programs from LEVELS presented here, FINDONE-
OP and OPNONE.

The program FINDONEOP, Figures 3.11 and 3.12, is stubbed in FIND-
FORMAT. It is the most complex program presented. The Algol procedure
declaration is used to organize the parts of the program to improve the readability.

46

«Hfn-i-rfnr-- . _ "■-^•■- --^---^-^-'-i.MririmrilMifc1^--^—:LI:
--°- I I 'I r- i liiitiiiiiTafiiii ■■—^-—■-^■.■^'' —■,i--—*"-;iHMiiliiitiiüil iiHilni

M^M— = mamnm

Figure 3.10. Flow Diagram for the Program KECUTE

47

 - —— - ~—.—. _^„^..—^_ *■■■-■

■

FINDONEOP (Instruction, Byte, J): begin
comment if the instruction involves a single operand, then set J:

else set J:
- 1

integer

0;

Hisource, Losource, Hides;

procedure MORE TEST: begin
comment Losource < 3 then shift else not one operand;
GETLOoOURCE (Instruction, Losource);
comment get bits 8, 7, 6;
if (Losource < 3) then J: = 1;
end MORETEST;

procedure TESTBYTE: begin
comment if not byte then JSR else traps and not one operand;
if non Byte then J: = 1;
end TESTBYTE;

procedure TRYDES: begin
comment if Hides (bits 5, 4, 3) ■ 0, then in RTS and needs operand;
GETDESHI (Instruction, Hides);
if (Hides - 0) then J: - 1;
end TRYDES;

procedure SOURCE LOW: begin
comment if Losource = 1/2/3 a possible single operand instruction;
GETLOSOURCE (Instruction, Losource);
case Losource of | , J: = 1, TRYDES, J: = 1 I ;
end SOURCE LOW;

PROGRAM: begin
GETSOURCEHI (Instruction, Hisource);
case Hisource of) SOURCELOW, ..., TESTBYTE, J: - 1, MORETEST, . |;
end PROGRAM;
end FINDONEOP;

Figure 3.11. Text of FINDONEOP

48

 - ^^-^—^l _.. --

r

z

t
s
£
-

cu
u

-■=

C

Q
r.
CJ, -
s
C

n

3.

49

■ i - -

—.

ontelUX ot two tasks: "'"^ ""^ *Ji bytlJ whe„ever the high byte does

to determine the proper settings for J.

The Drogram OPNONE (Figures 3.13 and 3.14) offers another contrast in

computational events. The purpose 01 me prms . . . t its (l{fect Thus

for their execution.

The deeodlnB process is carried oot by a set ol six nested selection state-
.nents WRh n tte econd alternative of the sixth case a case statement 1. used
Tselect among six alternatives based on the value ot the mstrucfon.

4 SAMPLE PROGRAMS AS AN ILLUSTRATION OF THE PRINCIPLES

a "top-down" decomposition of the problem.

Those texts presented in the ^^^ "^^TiST^.

tlve ot this form of P^f ~~0 J0* '^^ ^„Tllow multiple runs ot

.*. A fhi^ th*> tPxt of PDP11SIM A second program, QUERYUBEK, is
SÄ .^ ™- ol the 7L of the control variable Stop, used to terminate

the program.

RTMPROG is snecified to be composed of three parts, and
th labJs u^^r he'rri dicarL function to be performed by then, (IMTSIM.
U^M a^d?LEANUPS,M,. The order in which tbey are to be carr.ed out I.

also defined in the program.

50

..^^■.^^ra.-H'iimiif i':,l^Mrtl>wrlr^ a Tim - m- Tti

1,1''L
' ."..»tur ilniMfc

OPNONE (Instruction, Byte, Haltinst): begin
comment form subsets of the no operand instruction for further decoding and

execution. Byte and Instruction are the basis for set identification;

if (Instruction > 6400) then ILLEGAL;
else begin ONE: ji_(Instruction > 4400) then TRAP;

else begin TWO: if (Instruction > 4000) then EMT;
else begin THREE: if (Instruction > 400) then CONDBRNCH;

else begin FOUR: if (Byte) then CONDBRNCH;
else begin FIVE: if (Instruction > 240) then CONDITION;

else begin SIX: if (Instruction > 6) then ILLEGAL;
else case: Instruction ofj HALT,WAIT,RTI,BPT,IOT,RESET|;

end SIX;
end FIVE;

end FOUR;
end THREE;

end TWO;
end ONE;

end OPNONE;

Figure 3.13. Text of OPNONE

51

J

1 —

THREE
Instruction > 400

FOUR Ty

Instruction > 6

Figure 3.14. Flow Diagram for the Program OPNONE

52

-- ■ .■. - - ■ - - -- ■■ ^MUHMMiM -- - -- '

1 ■■■ " !■ ■ . .i ■'■■^^^^^^^^^r ' '' ' ' "mimmmimm

This one program then presents in cameo the organization of the problem
into the top-down program. An examination of the programs found in the succeeding
levels of the program organization shows further formulation of the details involved
in the solution of the problem.

The program RUNSIM (Figure 3.3), for example, illustrates the control
of the actual simulation process. RUNSIM is activated after the initialization of
the simulation is carried out. It is terminated by the state of a control variable,
Go. The simulation process is performed by the repetition of an unnamed process.
Each time this process is repeated, an action is selected based on the state of the
variable Enable. The program RUNSIM is developed in sufficient detail to specify
how the values are assigned to both of the control variables (Go and Enable). Thus
a net effect which simulates the cycling of a computer is achieved.

The "top-down" development is continued at the lower levels through the
specification of the actions represented by INSTRUCTNHNDLR and CONSOLEHNDLR.

Each level of the program organization specifies in greater detail action
identified in a predecessor program. Programs are presented for each subtask
identified in the analytical process of problem decomposition.

Principle Two specifies that the program should be organized into distinct
levels forming an ordered series o^ intermediate systems of programs. The
programs used in the example have been identified as being assigned to various
levels. Beyond observing the required ordering between a stub and its definition,
the programs have been grouped into levels in a way which isolates specific aspects
of the program.

The motivation for some of the grouping has already been discussed. The
first level of the program organization contains the single program, PDP11SIM,
which specifies the problem solution. At the second level, a choice is made not
to include QUERYUSER because it does not deal with the problem of simulation.
The stub is left undefined until LEVELS of the program organization. LEVEL2
consists of the programs INITSIM, RUNSIM and CLEANUPSIM, all of which are
stubs in SIMPROG.

At LEVEL3, only two programs are included, INSTRUCTNHNDLR and
CONSOLEHNDLR. This decision reflects the intention to isolate in the levels
as much of the interpretation process as possible. At LEVEL4 the parts of
INSTRUCTNHNDLR are collected and the parts of CONSOLEHNDLR are excluded.
This separation was based upon the differences between the console simulation
in this interactive program and any microprogrammed implementation of a
console. There is an intuitive feeling that an emulation of a PDP-11 could use
the instruction processing program as its basis, but would not be likely to use
the console processor.

53

— '"iiriiimirnnii inm

r- mmm tmm

Both the layers in the tree of decomposition and the levels of the program
text form a hierarchy; they are related to each other. A subtask appears in layer "n"
of the tree of decomposition because it is a part of a task in the layer "n - 1". A
program is assigned to a level based on its predecessor and also on its having a
common level of abstraction with other programs on that level. A sub-system of
programs is assembled in a level to facilitate testing of the programs and to
isolate the impact of adaptations and changes to the program.

The third principle of Structured Programming deals with the allowable
set of control structures. In particular it emphasizes the simple ordering of a
sequence of program steps. The purpose of this third principle is to assure the
construction of a program, the execution of which progresses from the beginning
to the end, stepwise, in a forward direction.

One of the interesting aspects of the simulation as a test problem is the
necessity for the use of a repetition statement to express the first decomposition
of the problem. As has been pointed out earlier in this report, the use of the
simulator decomposes into a number of independent runs of the simulation program.
This requirement is met with what is essentially a "one line program", PDPllSIM,

repeat begin ... end until Stop;

The repeated statement is decomposed until the setting of the control variable
is specified.

Perhaps the best example of the net effect of a combination of selection
statements is found in the program FINDONEUP (Figure 3.11). This program
consists of a simple sequence of two operations:

1) isolate the high character of the source
field; and

2) assign J a value of one for all single
operand instructions.

Each of these events can be validated as stand-alone events which must take place
in the stated order. If the value of Hisource is 1, 2, 3 or 7, then the instruction
cannot be a single operand instruction. If it is 5, then it is a single operand instruc-
tion without any question. The other cases, 0, 4 and 6, all require further examina-
tion before determining whether or not they are single operand instructions on the
PDP-11 computer. The inner structure of each of these further tests is built in
the same way.

54

MiiriaMi-^ii-""'"-1'"-^"'-'' ... ^—^-^-^^—.^-^..^ ,

iHiuiniiii. .,.;umkiii,i u.mmmmmmm M "si^^ ■_: " ■ .^ .-_„„,„,^^"•"TWrmWrW

Because of the structured use of the nested selection statements, the complex
selection and the resultant instruction execution is treated as a single computation
in a sequence of computations.

Thus, even when the non-sequential forms such as a repetition or a selection
statement are used, each is incorporated into the program in terms of its net effect,
in a sequential construct.

An illustration of the operation of the fourth principle of Structured Program-
ming can be seen by examining the programs given in this section in their order of
occurrence.

In the first program, given in Figure 3.1 (PDP11SIM), the control structure
for the program is the repeat statement with the compound statement that it controls.
The requirements to complete the control structure are satisfied by the declaration
of Stop, the control variable, and by the indication of a component of the program
QUERYUSER to provide a value for the variable. The subtasks which must be
performed to do the simulation are identified, and any conditions which apply to their
execution are specified.

The program RUNSIM again employs program calls or stubs to defer details
about the computation which are not required for the complete specification of the
control structure at this level. Sufficient dotails of the program are developed to
show how the control variable, Enable, receives its values. The assignment of
values to Go is also identified; thus Go is initialized to a true state and can be set
to false either as a result of console action or if the cyclecount exceeds the cycle
limit. All other detailed specification of the solution is deferred to lower levels
of the program organization.

The program INSTRUCTNHNDLR introduces only enough detail into the
program to specify the five subtasks into which instruction processing decomposes.
The program stubs are used to separate the details involved in each phase of
instruction processing from the sequencing controls used to activate the phases.
The program composed through this third level of program organization contains
none of the details that are directly associated with a PDP-11. The simulator
is programmed or specified into the very "heart" of the instruction cycle with
only the control structure developed in detail. When the stubs for INSTRUCTNHNDLR
are defined (FINDFORMAT, Figure 3.7), then the details of the computer being
simulated enter into the program design.

The application of Principle #5, the deferral of decisions about data repre-
sentation, is well illustrated in the example. In the sample of programs presented
there is no discussion of data representation except for the comment contained in

55

^.^^.^ .-l^^,^ltl... . ■ , .^tJäM^^i^^ü^^^^^x... -^...nv iiri-iiiiiiimiMiiMiiiiii'-ii,Hf

m—^—p»^^—1 i ■ .iii. ■ im m __ —_ _wm ' ' > > > <' ^^im^immmm^

the program INSTRUCTNHNDLR. All requirements to deal with the internal repre-
sentation of the data in the pseudo memory are isolated to a single level of programs
at a very low level. Aty concern as to whether the simulator is to be executed on
a decimal or a binary machine are isolated from the program structure. The impact
upon the program of any particular optimum word width for the host machine is also
isolated from all except the lowest levels of the program organization.

5. ANALYZING PROGRAMS FOR THEIR CORRECTNESS

The programs presented in this section are all formed by the decomposition
of a programming problem. These programs are constructed in one of three forms.
The simplest form of these programs is an ordered set of smaller programming
problems which are performed in the specified order (e.g. , INSTRUCTNHNDLR,
Figure 3.5). Another form of the programs involves the repetition of a smaller
programming problem (e. g., PDP11SIM, Figure 3.1). The third case involves
the selection between alternatives (e.g., IXECUTE, Figure 3.9). Thus each of
the basic control structures used in Structured Programming can itself be the basis
of organization for a program. In each case, the net effect of the performance of
the program must be to provide a solution to the programming problem on which it
is based. Each program represents the specification of a problem solution.

Since the programs take on a restricted set of forms, some of the require-
ments for their validation can be generalized. This generalization is a guide for
later application to the individual programs.

a. Case I. Sequential Programs

For purposes of analysis certain properties of a well structured sequential
program can be taken to be axiomatic.

1. All of the statements in a sequential program will
be evaluated once and only once, in the order of
their occurrence.

2. All programs have a single entry and exit point
and therefore execute from beginning to end.

3. No program can have its local variables altered
as a side effect of the execution of some other
programs.

4. Only an own variable can retain a state from a
previous execution of the program.

56

.. .. , . IM—— I

MtL

The essential problem in the validation of a sequential program can be]

summarized in questions.

1 Do the statements constitute a decomposition of
the problem; i.e., is the problem to be programmed,
at a given level, completely satisfied provided the
subtasks which occur as calls (procedures, sub-
routines or macros) in the program are correctly
defined and the control statements (repetition or
selection) together with the assignment statements
properly executed? This requires consideration
of the programming environment at the level being
examined as well as the behavior of the PDP-11.

2. Does the order of the subtasks (statements) create
the desired effect ?

b. Case n. Iterative Programs

Iterative programs present a different problem in validation. The first

question f^^ntial programs (Case I) must be ^"^^J^n
erams also In addition to that question, it is necessary to validate the iteration
process itself. Thus there are three additional questions to be examined.

1. Is the controlled statement executed at least once
when appropriate ?

2 Is the minimal requirement for the termination of
an iteration statement satisfied ? Since side effects
are not allowed, the statement, S, must modify the
value of one or more variables in such a way that
after a finite number of iterations the condition for
repetition of S is no longer satisfied.

3 Does the termination take place correctly; i.e.,
are the proper number of iterations carried ou* ?

c. Case ID. Selective Programs

When a program is organized around a selection statement (the selection
can be carried L through a case statement or an if statement), there are special

criteria for correctness.

57

■■ mmm^mmmm

1. The number of statements provided as alternatives
must exhaust all possible values of the selection
variable.

2. The alternative statements must themselves be
valid representatives of one of the three forms
(usually a sequential form).

3. It must be possible for the selection variable to
take on the full range of values.

4. If the only assignment of values to the selection
variable is after the selection, then this control
variable must be declared at a higher level than
the selection statement, and tba variable must be
initialized.

The conditions presented for the given program form, when satisfied, are a basis
for an analytical validation of the program and are conditions which are necessary
although possibly not sufficient for a demonstration of the program's correctness.

PDP11SIM is an iterative program in which the statement being controlled
is a compound statement. The first step in the validation of the program is an
analysis of the control structure of the compound statement being controlled.
It starts with a statement of the net effect of the ordered execution of the two pro-
cedures SIMPROG and QUERYUSER. The net effect states: "Carry out a single
simulation run and then ask the user if another run is desired." A single simulation
run may include the execution of a number of programs for the target machine, the
PDP-11 Theorderof execution for the two procedures is really immaterial. As
positioned, the details of the definition of QUERYUSER must correctly support the
positior adopted relative to SIMPROG.

The validity of the unlabeled compound statement can be asserted since it
meets the needs of the problem. There is an implied reservation, however, based
upon the valid definition of the procedures SIMPROG and QUERYUSER.

If the net effect of the iteration statement performs multiple executions of
the simulation program based upon the user's requirements, then the program is
valid For this effect to be achieved, the compound statement must do exactly what
it was specified to do. The form used for the iteration statement guarantees that
that there will be at least one execution of the simulation. Within the compound

58

■ -- - ■ ■-- ■ — ■ _ ...

mm

statement the procedure QUERYUSEH returns the value of the control variable
true or false, which reflects the user's needs. Therefore, the iteration statement
can terminate. If Stop: Mse on the nth iteration, then there will be no iteration
n + 1. All of the conditions lor a valid iteration program are met.

SIMPROG is a sequential program defined within PDPHSIM. There are
two (2) specific requirements for the validation of a sequential program If the
program can be shown to have as its net effect a single simulation run then it
is valid. The three procedures INITS1M, RUNSIM and CLEANUPSIM 'if properly
defined, are a decomposition of the functions of a simulation run and they are
expressed in the only order that is appropriate to performing the task. An integer
variable is provided to communicate n user-supplied cycle limit value from INITSIM
to RUNSIM where it is used to assure termination.

The program SIMPROG can be asserted to be valid.

RUNSIM (Figure 3.3) consists of the repetition of a compound statement
The desired net effect to be achieved by RUNSIM is the performance of a single
simulation run. A single simulation run consists of cycling to carry out the
simulation of either instruction processing or console actions as long as required
The single statement being repeated in the program, RUNSIM, will continue until '
the value of Go is false. With each cycle of the iteration the program will execute
either of two programs, INSTRUCT or CONSOLE, to perform the required instruc-
tion processing or console actions. The choice of which program to execute is
based on the value of the variable. Enable.

Enable is initialized to the false state, which causes the program CONSOLE
to be selected on start up. Within this program the variable Enable can be set to
true; since it can be reset to false within the program INSTRUCT, it is clear that
it is possible for Enable to take on the full range of values. The conditions under
which the variable is set must match those found in the PDP-11 Enable is
assigned the value true only if Halt is false and either Continue or Start is true
Continue and Start are reset to false each time the program CONSOLE is entered
Unless the Halt variable is previously set to false before Continue or Start la reset
instruction processing will not commence since Enable would not be set to true.
The net effect of this combination of switch actions is the same as that found in
the PDP-11.

Within the program INSTRUCT the variable Enable is assigned the value
false if a variable Haltinst is true. Haltinst is initialized to false with each iteration
of INSTRUCT. It is passed as a parameter to the program INSTRUCTNHNDLR If
the program decodes a Halt command, then it is expected that the value true will be
assigned to Haltinst; this then allows Enable to be assigned the value of false. Thus,
a halt command stops the iteration of instruction processing and initiates CONSOLE '
to permit simulated console actions.

59

— ——- ■ - ■ —■— — -• ■ - —" - -

It can be concluded then that the compound statement controlled by the repe-
tition does perform the proper functions as required by töe problem.

'Hie variable Go can be set to false by a simulated console action. This is
an extension of the PDP-11 which is equivalent to turning off the power to the
computer. The variable Go is also set to false as a result of a limit placed on the
allowable number of iterations of the instruction processing.

It should be noted at this level that one facility of the PDP-U console is
lacking in the model - allowing the user to set a simulated halt switch while
Enable is set to true and PDP-11 instructions are being interpreted.

INSTRUCTNHNDLR (Figure 3.5) is essentially a sequential program formed
by identifying an ordered set of subtasks which completely perform the task of
instruction processing. ISELECT is assigned the task of guiding a re-direction of
the instruction stream due to an interrupt, if necessary. The responsibility to
cause the word pointed to by the program counter (PC), register 7 (R7), to be
brought to a pseudo instruction register, Instruction, is given to IFETCH. A
partial decoding of the instruction to identity the number of operands required
for execution is the task of FINDFORMAT. Based upon the necessity for an
operand as determined by FINDFORMAT, the task OPFETCH may be selected.
If selected, OPFETCH retrieves the required source and/or destination data.
IXECUTE must complete the decoding of the instruction, select the proper function,
and execute it, as well as store the result if required. When executed in this order,
the procedures identified, if properly defined, will effect an instruction processing

cycle as defined for the PDP-11.

INSTRUCTNHNDLR can be considered a valid program.

The program FIND FORMAT (Figure 3. 7) consists of three subtasks. The
instruction format which is the basis of this syntactic analysis program is the

double operand format.

BYTE OP SOURCE DEST.

ir. 14 12 11 6 5

Double Operand Format

The three subtasks are to extract the byte indicator, copy the op field, and then
analyze the op field. Both the order and the nature of the subtasks satisfy the
assigned programming problem. The third subtask, however, is a complex selective

60

■■^.-^-.^.^.-^ -.-^■■- -;-.■.< ■•-^-.- - iMm^yiMtaäimä^aimiUimm ■■■-——m*ätbakr-\\t-M-

statement, the net effect of which must be confirmed. There are four (4) sub-
classes of requirements identified by the contents of the op fields dealt with in
the compound statement OPFIELD. The four sub-classes, their identification
criteria, meaning, and implied action are summarized in Table 3.1 below.

OP MEANING ACTION

(1) 0 Not double operand. Examine source field.

(2) 1 - 5 Double operand; Byte
operations allowed.

J = 2, byte indicator valid.

(3) 6 Double operand; Addition J = 2, byte indicator distin-
or subtraction; No byte guishes addition from sub-
operations traction, save it. Set byte

to false.

(4) 7 Illegal operation. No operands. J = 0.

Table 3.1. Opfield Contents

The compound statement OPFIELD opens with a selection statement of the
form:

if (Boolean = true), then Sj else So .

This binary selection is based on the zero and non-zero classes in the opfield. In
the zero case, control is passed to FINDONEOP, with J = 0 as a result of initialization.
If Op is non-zero, then the statement TRY2 is executed. If OP = 7, then an exit is
made from TRY2. Control is returned to the outer block of the program with J ^ 0.
Since the instruction is illegal there is no operand required. If OP ^ 7 and OP / 0,
then the instruction is legal; it remains to be determined if it is an add or subtract.
In any ease, J is assigned the value 2, to indicate that two operands are required.
The isolation of the add and subtract instruction is accomplished by the selection
based on (OP = 6).

Table 3.2 relates J values to all of the possible bit combinations for an
instruction. Based upon this and the analysis it appears that FIND FORMAT is a
valid program.

61

^ ^ ^m^^^tummtmmm —•-- -— ■■■■ ■■' ^

^

1
J Op Source Dest. Op 1 source Dest. Instruction Class

0 17 00 00 < l< 17 77 77 Illegal

2 1Ü 00 00 < * < 16 77 77 Subtract Instructions

2 11 00 00 < * < 15 77 77 Double Operand - Byte
Instruction

0 10 64 00 < ! < 10 77 77 Illegal

1 10 50 00 < l< 10 63 77 Single Operand - Byte
Instruction

0 10 44 00 < !< 10 47 77 Trap Instruction

0 10 40 00 < I < 10 43 77 EMT Instruction

0 10 00 00 < l< 10 37 77 Conditional Branch Instruc-
tion

0 07 00 00 < * < 07 77 77 Illegal

2 01 00 00 < !< 06 77 77 Double Operand Word
Instruction

0 00 64 00 < I < 00 77 77 Illegal

1 00 50 00 < I.< 00 63 77 Single Operand Word
Instruction

1 00 40 00 < * < 00 47 77 JSR •

0 00 04 00 < I< 00 37 77 Conditional Branches

1 00 03 00 < I < 00 03 77 SWAP BYTES

0 00 02 40 < ! < 00 02 77 Condition Codes Operators

0 00 02 10 < I < 00 02 37 Unspecified

1 00 02 00 < l< 00 02 07 RTS

1 00 01 00 < I< 00 01 77 JUMP ♦

0 00 00 06 < l< 00 00 77 Illegal

0 00 00 00 < l< 00 00 05 Operate Instruction

I stands for Instruction.

♦Special check in instruction execution to be sure the destination is not a register.

Table 3.2. J Assignments All Possible Instruction Patterns

62

 — - -

FINDONEOP (Figure 3.11) is a selection program (Case DI). The form
taken by the selection statement is the case statement

"case i of jS0. 8^ 8^ 83. 8n | when 0 < i < n." |

Confirming the general criteria for validation shows that the control variable
Hisource has a range from 0 through 7. Since the statement list contains e.ght
(8) entries all possible values of the control variable are accounted for. Hisource
takes its value from bits 11 through 9 of the instruction being processed and thus
may take anv of the values from 0 through 7. The control variable is local to
FINDONEOP; thus there are no scope problems. A new value of Hisource is
derived for each execution of FINDONEOP. The remaining general requirement
for correctness of FINDONEOP involves validating the alternatives in the statement

list.

Entry S0 SOURCELOW, a procedure declared as a part of FINDONEOP,
is itself a selection program. The control variable for this second order selection
is Losource It is also derived from the source field of the instruction local to
FINDONEOP, and can take on the value of the eight (8) integers from 0 through 7.
The statemeilt list has eight (8) entries. The entries S0, S4, S5, 86, S7 are
vacuous because all instructions which decode these values in bits 8, 7 and (. are
instructions which have no operands (Operate Group and Conditional Branches .
The statement S, decodes to a Jump command with a destination 0Pera"d. s° J lS

assigned a value of 1. Statement S2 from the list is a procedure named TRYDES,
a sequential program which correctly differentiates between an RTS instruction
and a Condition Code Operator. If the instruction is recognized as an RTS, then
J is assigned a value of 1. The statement S3 assigns J the value of 1 because the
instruction is recognized as a swap byte command. Thus, all non-vacuous entries
in the statement lisTare valid, which leads to an assertion that SOURCELOW is itself

valid.

Returning to the original solution statement, Sv S2 and S3 are vacuous
and S. leads to a procedure which differentiates between the JSR command and the
Trap command; S5 assigns J a value of 1 since all instructions in that class are
members of the single operand group. S6 is defined by a procedure which indicates
the four shift commands and sets J equal to 1 for these values. All others in the
SG group are left at J = 0. The S7 condition defaults J = 0 through the vacuous entry.

The set of PDP-11 instructions which contain their distinguishing op codes
in the source field are processed to identify those which require ^^ "^^d

All possible bit combinations in the source field are processed and handled. A
summary of the information encoded in the source field and its significance as an
operator indication is shown in Table 3.3. Based on the satisfaction of the general

63

 ■ ^^^mmamiuilmm

criteria for selection programs, and the relationship to the PDP-11 instructions,
it is asserted that the set of all possible bit combinations in the source field are
properly identified as belonging to one of two subsets, the one requiring a single
operand for execution, the other requiring none. FINEONEOP appears to be valid.

2 Digit Source Field Meaning Action

64 - 77 Illegal J = 0

50 - 6 Single Operand J = l

40-47 /\ -| Byte JSR J- 1

40-47 /\ Byte TRAPS J = 0

4-37 Conditional TRANS J = 0

1 - 3 /^ Byte Conditional TRANS J-0

S - 8 /N "I Byte SWAP BYTE J- 1

2 - 2 /\ H Byte Dest. < 10 Condition Code Operator J -0

1 - 1 /N 1 Byte JMP . J = 1

0 - 0 /\ 1 Byte J = 0

Table 3.3. Source Field as Operation Indicator

OPNONE (Figure 3.14) is a selection program. The program is built of
nested binary selections. Due to the nesting of the statements a table (Table 3.4)
of all possible bit combinations for the instructions processed by OPNONE helps in
the validation process. The control variables used in the selection statements are
all booleans For ease of discussion the nested levels are identified as Zero (0)
through Six (6). The zero level is an implied identification. The use of the nested

-if B then S else S2;

form of selection divides the list pattern into progressively smaller subsets.
Table 3 5 indicates the bit patterns that are isolated and the levels at which they
are isolated. Based on the tables, it can be asserted that OPNONE is a valid program

An argument has been presented to demonstrate the validity of each of the
programs used in this Section of the report.

64

■HI ___ gm
■

Itange Identification
r

Level
Handled

17 00 00 £ I < 17 77 77 Illegal 0

10 64 00 < I < 10 77 77 Illegal 0

10 11 00 < I < 10 17 77 Trap 1

10 40 00 < 1 < 10 43 77 EMT 2

10 00 00 < 1 < 10 37 77 Conditional Branch 3/4

07 00 00 < I < 07 77 77 Illegal 0

00 64 00 < I < 00 77 77 Illegal 0

00 04 00 < I < 00 37 77 Conditional Branch 3

00 02 40 < I < 00 02 77 Condition Codes Operato rs 5

00 02 10 < I< 00 02 37 Unspecified - Illegal 6

00 00 06 < I < 00 00 77 Illegal Ü

00 00 00 < 1< 00 00 05 Operate Group 6

Table 3.4. Possible Instruction Bit Patterns at OPNONE (J - 0)

Level/
Statement Where Directed Trap No.

ü SI 17 00 00 - 17 77 77 ILLEGAL 10

10 64 00 - 1C 77 77

07 00 00 - 07 77 77

00 04 00 - 00 77 77

1/Sl 10 44 00 - 10 47 77 TRAP 34

2/S1 10 40 00 - 10 43 77 EMT 30

3/S1 10 04 00 - 10 37 77 CONDBRNCH

00 04 00 - 10 37 77

4/S1 10 00 00 - 10 03 77 CONDBRNCH

5/S1 00 02 40 - 00 02 77 CONDITION

6/Sl 00 02 10 - 00 02 37 ILLEGAL 10

00 00 00 - 00 00 77

6/S2 00 00 00 - 00 00 05 case i of js S S

Table 3.5. Bit Patterns Selected at Each Level

05

t^mmmmMta^mmmmm -—■ "- --"' - '■ ■ - i i it^tiiiii'iiiintiami

SEC HON IV

THE DIJKSTRA PROGRAMS AND THIS STUDY

Before proceeding to a review of the results of this study effort, it is
necessary to summarize the material presented by Dijkstra. Within the Dijkstra
paper there are two programs presented in detail - "print the first thousand prime
numbers" and "plot v f(x) - as examples of the composition of structured pro-
grams They differ significantly in form, and these differences are sufficiently
great that their common reliance on a set of axioms about programs and then-
formation is obscured. These axioms are the foundation for the principles of
Structured Programming.

Axiom 1. All programming problems can be parsed,
with respect io time, into a set of sequential
sub-actions.

This parsing is the very basis of computers and programs. The parsing
consists of the division of a problem into an ordered set of smaller subtasks. In
the prime number example 21 the task:

"print the first thousand prime numbers"

is given. This task is then parsed into the two sub-actions:

"fill table p with first thousand prime numbers"

"print table p."

The decomposition of some tasks leads to a repetition of the same sub-action. An
example of repetition is shown in the parse of the second statement from the example

aforementioned:

"print p [k] for k from 1 through 1,000. "

To be computable the number of repetitions of a subtask must be finite, but this
number can be indeterminant, as in an iteration. A shorthand representation of this
special form of parsing is made through the use of the repetition statement:

"repeat S, until C."

In this form the single statement which is controlled represents a parse with respect
to time into an ordered set of sub-actions.

M

 ■ - J

I ■ —

Axiom 2. Programs may be considered to be computa-
tionally equivalent if they evoke computations
which have the same net effect.

The net effect of a program is defined as the net change which has taken
place across an interval of time between the times t0 and tj. The time of the
beginning of the computation is denoted by t0, while tj identifies the terminal
point of the execution. Such an interval of time is considered as an entity. Any
intermediate changec in the state of the computat process are ignored. If there
are no possibilities of side effects from other computations, those changes seen in
the process state are the net effect of these computations.

Corollary: For net effect comparisons to be practical
^ In large programs, it is often necessary to

be able to map the sequence of one program
upon the other.

Such a mapping may often require the re-ordering of the sequence of one of
the programs The sequence of a program can be re-ordered by changing the order
of the sub-actions if there is no change in the net effect of the program. Sometimes
comparisons can only be made at a more abstract level of the programs. This more
abstract state can be reached by applying the inverse of the operation described in
Axiom 1.

Axiom 3: Any problem statement with its inputs and
outputs identified can be considered a de-
tailed program for an abstract "special
purpose" machine.

Given a machine the only purpose of which is to print a list of prime numbers,
a complete program for this machine is expressed in a single statement:

begin print first thousand prime numbers; end;

A machine of this kind generally exists only as an abstraction. Writing a program
can be described as the process of reducing a problem to the logic and control
required to transform a more general purpose machine into such a special purpose

machine.

57

■-1" -'-■—-*- amnt^m^lm^m - - ■ mtmMtMittmiiilim .^u^^^iiifl

Ill I'

Corollary; A problem statement can be considered to be
an abstract program for a general purpose
machine.

The program is abstract because it deals with the solution of the problem
in general terms rather than in the particular instructions of the general purpose
computer.

These philosophical points are the basis of Dijkstra's efforts to build pro-
grams so that their texts will support a convincing demonstration of correctness.
Yet the application of the axioms and their corollaries in the two examples given
by Dijkstra ("list 1, 000 prime numbers" and "plot the graph y - f(x)") seem to
yield radically different program forms, even though the essentials of the pro-
grams are the same. Neither of the examples results in a program that can be
executed, except in the environment of special computer systems.

Both of the programs composed in the Dijkstra paper present a progression
of programs. Each of the programs taken in order in the progression involves more
detail than its predecessor. This gradual refinement and functional parsing of the
total task acts as a framework on which the analysis necessary to demonstrate
correctness can be based.

The examples presented by Dijkstra are relatively short programs in con-
trast to the problems of the real world. Both examples parse immediately into at
least two sequential actions. In fact, they are representative of a whole class of
typical programs involving a two step process:

1) derive a data set;

2) display the result.

The first example chosen by Dijkstra^2 hereafter referred to as Case I,
reports the step-wise development of a program to print the first 1,000 prime
numbers. This program does not assume the algorithms for the "sieve of Era-
tosthenes", but rather develops its own algorithm through a gradual process of
refinements. These refinements make use of the mathematical properties of
prime numbers to produce a reasonable computational algorithm, which is a
variation of the "sieve of Eratosthenes. "

The second example. Case II,23involves the printing of a graph upon a
line printer The printer is given to have only two commands, "New Line
Carriage Return" ("NLCR") and "Print Symbol (n)" ("PRYSM(N)"). NLCR

68

 -- -■ -■■—-■ -.—■—^ - - '■" -■■- —--—^-»-«

defines the left-most position of the next line as the "currently printable position;"
PRYSM(N) prints a character identified by the value of the integer parameter N on
the currently printable position, and defines the next position as the new currently
printable position. The problem to be solved is to plot the form given in a discrete
parameter representation upon the digital printer.

The form of Case I, the prime number example, is illustrated by the three
levels of description given in Figure 4.1.

description 0-

begin "print first thousand prime numbers" end

description 1:

begin variable "table p";

"fill table p with first thousand prime numbers";

"print table p";

description 2:

la = "Integer array p 1:1000"

lb = "make for k from 1 through 1000 p [k] equal to kth
prime number"

1c = "print p [kl for k from 1 through 1000"

la

lb

1c

2a

2b

2c

Figure 4.1. Dijkstra's Prime Number

This program, Case I, can be characterized as follows:

1. Makes explicit use of the problem statement to
form the initial effort at a program.

2. Step-wise development of levels are based upon
the analysis of the program and directly reflect
the analysis. In each, the machine for which the
proposals are to be considered as programs re-
mains an abstract concept. This machine exists
outside the abstract state only when the syntax in
which the problem is described maps into the svntax
of some existent computer system.

69

■ - - - ■ - - - ■
J

~ _. M^MMAIMIHI — J IJ -■U.1J«-,« -

3.

■1.

5.

Each level is presented as a structure which
approaches a program or procedure in form,
but in an informal way. The term proposal is
used to describe these entities.

The proposals themselves are formulated as a
sequence of steps expressed in an informal

syntactic way.

Proposals are identified through the use of a
functionally non-descriptive identifier. The
identifiers are used to describe the historical
position of the proposal as a derivative of a
predecessor. Where a proposal is presented
to refine a particular statement in a Predeces-
sor this derivative relationship is exhibited in
the 'identifier for the proposal. Alternative re-
finements to the same predecessor have the same
root identifier augmented with markers. Multiple
alternatives can be developed for the same pro-

posal level.

Thus, version 1 of the refinement of line 2b Is developed and is Isbeled

description 2bl(l):
begin pll]-2;pl2]: = 3; P [3] : = 5; p[4]:^;

p [5] : - 11; ... end

A version 2 of this description recognizes that the programmer does not know the

prime numbers and must derive them.

description 2bl(2):

^^-Sk^loOO do'bin "Inorease J until next prime

2bl(l).

number";
k:=k + lj p [kj- =j end

end

The program
a contrast in each of these areas

development illustrated by Case U. on the other hand, offers

70

I

nmmmtmiim ,_..,.>.,,...J.^..„—.^»^
■ ■■ ^^ "ihlrtilMTMM -■"-■'-■'■■*—in iin J

'■"• wm wmmmrnrm*

The first levels of text proposed for the graph problem illustrate the accom-
panying comments.

COMPFIRST

begin

draw: | build; print | ;

var image;

instr build (image), print (image)

end

where,

var is an identifier for a variable list,

instr is an identifier for an instruction list for the machine COMPFIRST.

The second text proposed refines the instruction build.

CLEARFIRST

begin

build: jcfear; set marks [;

instr clear (image), set marks (image)

end

The characteristics of Case II are:

1. The use of the problem statement is implicit.

2. Development in the second example involves the
explicit use of the machines as a level of develop-
ment. Each machine is formed to be capable of
explicitly executing an algorithm. This algorithm
is included in the machine definition. The state
space of the machine is defined, as well as the
instruction set required for the execution of the
algorithm. The entire package is called a pearl
and is given the name of the machine. The analysis
for the problem in Case II takes place behind the

71

 --- - — ■- ——^..*..^^,~.>-*^^ ffiiiMliiiilMiiillTilMiniitiir ^-^- - --^--——^

scenes. This analysis is represented in the
machine manuals, which Dijkstra suggests be
developed for the machines. In the example
given, the meaning given to the instructions looks
muchlike the proposal steps given in Case I.

3. The programs which are written for the machines
as they are presented in Case U are formulated
in a clear functional notation. Thus, a program
can be illustrated with the program from COMP-
FIRST

draw: | build; print |; .

In this notation what might be considered a level 0
definition for Case I consists of a sequence of two
Pteps. This program is executed by calling two
proceciures in order. In this way the developmental
notion is much closer to an executable form than is
found in Case I.

4 All proposals are presented as programs, together
with the machine defined for them. There can be
more than one program written for a single machine.
The programs are related to earlier proposals through
their identifier. All program identifiers except the
first program identifier represent undefined instruc-
tions for earlier machines. The machine specified
for "draw", the first proposal, is named COMPFLRST.
It lias a state space "image" and two undefined in-
structions, "build" and "print".

5 Identifiers exist in Case II in two levels, machine
identification and program identification. In both
cases the identifiers used are descriptive of the
function associated with the machine or program,
respectively. The machine identifier COMPFIRST
tells that computation precedes display. The program
identifier "draw" reflects the function to be performed
by the program. Thus the machine name reflects the
ordering of the sub-actions and the name "draw"
specifies the net effect of their execution.

72

.^1.. ...^ ^^„J.- .•^...1-i-^- . .■,^-J..^_M»_„l-ma.^^—^^ * .^■^..,. ■■,-:....»...,....,„- ,, ..;,,. „^.„.»-.■..„^„■-.■^.„■^.^ M j..^-..,..,,^ .,^..

6. The levels of machines in Case II are implicit in
that a single level of a machine can be programmed
in terms of lower level machines only. In turn, the
functions which are refined by the programs written
for that machine are available to higher level machines.
Thus the relationship between the various levels of
the design can only be noted by referencing the
machines themselves.

A close examination shows that the examples present the same material in
different ways; these differences are a reflection of a change in emphasis from
design analysis to a closer approximation of the execution form. Neither of these
forms of step-wise program composition yields what could be considered a compilable
or executable form.

As the material of Case I is developed by Dijkstra, the procedures which are
executable still must be connected. Thus, when the decomposition of the statements
2b and 2c are completed, a separate program must be built of the derived parts
which will activate them as elements in the sequence. Although the format of Case U
does eliminate this problem, the executable programs are buried in the middle of
the machine definitions. Some researchers have designed systems which would
execute the pearl type of structure used in Case U. The procedure identifier
together with the machine name form a name-couple which could serve to uniquely
identify them in a computer system. It is necessary to extract the executable pro-
cedures from their positions inside the machine definitions.

It should also be recognized that the two techniques presented in the
examples have much in common.

1. Both of the examples make use of the technique
of step-wise decomposition of the problem through
a step-wise composition of a program to solve the
problem.

2. The goal of constructing a program is addressed
through this process in both examples.

3. Design decisions are deferred in both of the
techniques.

4. Neither of the composition processes have hard
and fast rules about how long the decisions are
delayed.

73

-Inn iniinriiiilir""-"^— >-=■"■■'•—>•--■ ■■■— ■• - ■■-~-.,i**~*~ MMMHMMIWMiMii -■"i'"--—' '*""—^ J

■■*•

5 Both approaches generally tend to place priority
on the development of the controls for the pro-
gram. Thus, when a function will be performed
is completely defined before the function is
defined.

6. Simply ordered processes are the preferred
manner of expressing a parse of an action in
both of the examples.

7. Introduction of selection and repetition into the
control path of the partitioning process is delayed
until after the net effect has appeared in a sequen-
tial parsing of the process under both approaches.

Using these commor. features (expressed in Section H as Principles of
Structured Programming), the programmer constructs a program of an ordered
set of "small" sub-actions to create a desired net effect. The resultant program
organization is an aid to the programmer in constructing a convincing demonstration
of correctness for the program.

The seven common points observed here were compressed and re-stated to
form the principles given in Section n, and it is upon this basis that the work re-
ported in the study was developed. Thus, the work presented in Section HI to
illustrate the application of the philosophy of Structured Programming has ret^ned
the substance of Dijkstra's work while essentially adopting the form of Mills.

This form is constructed by explicitly using the functional program form of
the programs found in the "pearls" of Case II. There does not appear to be any
advantage in uuilding an explicit form of machine as found in the "pearl". The
analytical development of a problem, found in the Case I example, has been rele-
gated for use in the designer's notebooks, at least until the programmer's analytical
msights become keen enough to overcome the drawbacks discovered during the course

of this study.

74

J„^^.., _ -.mm niiiiiii-iui

^^^■^"

SECTION V

RESULTS AND OBSERVATIONS

The results of the study consist of a statement of a set of Principles of
Structured Programming and a program built using these principles. A further
result of this study effort is a pair of guides for limiting the size of the program
produced at each level. These guides are subjective as contrasted with Mills'
"one page limit".19 It is evident from the experiments conducted in this study that
the complexity of the statements used in a program should limit the size of the
program. It is reasonable to build a convincing demonstration of correctness for
a program consisting of 50 sequential subtasks; it may not be reasonable to build a
similar demonstration for a program consisting of a page full of nested selection
statements. Thus the ability to be convincing about the correctness of a program
forms an upper bounds upon the size of any particular program construct. A lower
bound on the minimal size of a program is a function of the controls required in the
program. The details of the decomposition of an action must be sufficient to indicate
the setting of the control variables used in the program. Any conflict arising between
the limits can be resolved by using an alternate form of decomposition.

The programs given in Section III contain an illustration of the resolution of
such a conflict. It was necessary to split the FIND FORMAT program into the two
programs, FINDFORMAT and FINDONEOP, because of the complexity of the control
path. The conflict which arose in FINDFORMAT was resolved by re-analyzing the
task until sufficient understanding was achieved to allow the use of case statements
as a selection mechanism. It has been found that when the upper and lower bounds
criteria are applied to a program, it has been possible to quickly construct a flow
diagram for the program.

A guide to the demonstration of the validity of the programs is included in
Section HI, together with an example of its application. This guide is a by-product
of the effort, and while not sufficient for a proof of correctness, it has been very
helpful in desk checking the programs and in building arguments for validity.

1. OBSERVATION

The study clearly revealed the elusive nature of the concepts of Structured
Programming. The prior lack of a clear presentation of the principles of Structured
Programming was recognized during the investigation; as a result, a set of principles
has been enunciated in this report. These principles can serve to guide further re-
search and development efforts. They also can be applied to avionics systems
currently in development and procurement.

75

m^mmuam ■MaddUWUt

While the study exposed ambiguities existent in the concepts of nested levels
of abstraction the concepts are not made inoperative by these ambiguities. Rather,
the study finds merit in the motion and a need for further clarity beyond that developed
in the course of the study.

Many researchers see this as an inter-relationship of all sub-actions of
tasks which deal with a comparable level of detail. This interpretation appears to
be consistent with the reports Dijkstra made of "THE" system.10 However, the
fact must be observed that each of these levels may contain a number of layers.
Further, there are no rules for use as guides in allocating programs to levels.
This is very much a function of the insights of the programmer.

2. FAMILIES OF PROGRAMS

Structured Programming appears to relate to the generation of families of
programs using one member of the family as a base. This indicates a potential
impact on other software research aid development work currently in progress,
particularly the A ED work of Ross. 26

3. PROGRAM CRITICAL PATHS

There is a practical interest in recognizing the critical paths in aerospace
software systems. Such a recognition often can lead to the removal of processing
bottlenecks When the relative frequency of execution of the sub-components of a
program are known, then they can be intelligently evaluated as potential sources
of bottlenecks in the system. The use of a top-down program organization exposes
hierarchical ordering of the elements of the program, which facilitates the assign-
ment of relative frequency of execution values by analytical means.

In the test problem, the program path from INSTRUCTNHNDLR down
represents the principal computation path. One of its subtasks is not executed as
frequently as the others. (The operand fetch subtask is not executed for instruc-
tions having a j v^lue of zero (0).) A frequency distribution of the instructions used
in typical programs serves to provide a weighting value for this subtask.

4. RECOGNIZING COMMON FUNCTIONS

In applying the principles of Structured Programming, control for a function
is developed before the function is defined. The limited experience gained in this

76

■ - - j Mfea^dKHriK

test program, supported by previous experience?7 indicates that this approach leads
to a greater recognition of common sub-functions. An example of this is seen when
the instruction fetch is recognized as being identical to the stack pop operation used
in the operand fetch. Thus, the frequency of use of this operation is obtained by
adding the two uses of this common function. Although there is insufficient evidence
to evaluate just how much the organization of program structure aids in the recognition
of these common functions, it would appear to be significant.

5. ERROR DETECTION IN PROGRAMS

In preparing the demonstrations of program correctness, a number of errors
were found. Other errors were avoided simply because of the orderly way in which
the target program was organized. Although the reliability of software is a function
of the individual programmer as well as his environment, there are many factors in
the use of well-structured programs which appear to contribute to reliability in the
software. From this experience as well as the support of other experiments 25 there
is reason to believo that the use of Structured Programming contributes significantly
to the reduction of programming errors.

«. MEMORY EFFICIENCY

The impact of Structured Programming efforts upon memory efficiency is
basically unpredictable. Any impact which results from Structured Programming is
a function of other factors, such as the size of the system. The larger a system is,
the greater the probability that there are common sub-routines. Structured Program-
ming generally leads to much smaller sub-programs than are currently found in
avionics systems. There are preliminary indications from other studies that the
frequency of utilization of a sub-program tends to vary inversely with its size.
This would suggest that Structured Programming would lead to a set of frequently
used sub-programs.

In order for the maximum benefit to be derived from the use of common sub-
routines, it is necessary for the system to allow shared code. Such a system would
allow a single copy of the instructions to serve all users.

Any advantages which accrue in memory utilization may be offset by require-
ments for control of sub-routine communication.

77

■ Mill ■ H ■ I I nmm

7. HARDWARE - SOFTWARE TRADE-OFFS

There is insufficient evidence in this study to draw any conclusions with
regard to hardware-software trade-offs. The Structured Programming approach
does allow for the replacement of software functions by hardware with a minimal
impact upon the program.

78

—---- ■■"- ■..■-.- . -■-. :—»^-J^—^-.-J,—„-„■„■..„„..^ ■—■»■.iiii i BIM nillmWiii'miMiMniiiilMri

""U " : - -i:""1-: - 3BB '■^^•»"•"■■l""'""™!" '

REFERENCES

1. Dijkstra, E.W. "GOTO Statement Considered Harmful. " Communications of
the the ACM, vol. 11 (March 1968), pp. 147-148.

2. Dijkstra, E.W. "Notes on Structured Programming, " Technische Hogeschool
Eindhoven, Report No. EW-D-249, 70-WSK-03, 2nd edition (April 1970).

3. Dijkstra, E.W. "Notes on Structured Programming, " Structured Programming.
(Dahl and Dijkstra, eds.). Academic Press, New York (1973).

4. Böhm, C. andJacopini, G. "Flow Diagrams, Turing Machines and Languages
with Only Two Formation Rules," Communications of the ACM (May 1966),
pp. 366-371.

5. Hoare, C.A.R. "An Axiomatic Basis for Computer Programming. " Communi-
cations of the ACM, vol. 12 (October 1969), pp. 576-580.

6. Mills, H.D. "Mathematical Foundations for Structural Programming, " IBM
Corporation, Gaithersburg, Maryland, FSC 72-6012 (February 1972).

7. Rice, J.R. "The GOTO Statement Reconsidered, " Communications of the ACM,
vol. 11 (August 1968), p. 538.

8. Dijkstra, E.W. "A Reply by E.W. Dijkstra (to John R. Rice)," Communications
of the ACM, vol. 11 (August 1968), pp. 538-541.

9. Leavenworth, B.M. "Programming With(out) the GOTO, " Proceedings of the
ACM 25. vol. II (1972), ACM, New York, pp. 782-786.

10. Hopkins, M.A. "In Support of GOTO," Proceedings of the ACM 25. vol. U
(1972), ACM, New York, pp. 787-790.

11. Wulf, M.A. "A Case Against the GO O," Proceedings of the ACM 25. vol. ü
(1972), ACM, New York, pp. 791-796.

12. London, R. L. "Correctness of a Compiler for a Lisp Subset, " Proceedings of
an ACM Conference on Proving Assertions about Programs. SIGPLAN Notices 7
(January 1972), pp. 121-127.

13. London, R.L. "Proving Programs Correct: Some Techniques and Examples, "

BIT, vol. 10, no. 2, pp. 168-182.

14. Good, D.I. "Toward A Man Machine System for Proving Program Correctness,"
(Thesis Ph.D.), University of Wisconsin (1970).

79

 -;'-^—:"-- lllllllUllUlMII II I -.,...■„...,. J„».....^. .,..- -. ■MiiMIMtiMMll

— ■"—

15. London, R.L. "Bibliography on Proving the Correctness of Computer Programs,"
Machine Intelligence 5. American Elsevier Publishing Company, New York (1970),
pp. 569-580.

16. Dijkstra, E.W. "The Structure of the T. H. E, Multi-Programming System, "
Communications of the ACM (May 1968), pp. 341-356.

17. Mills, H. "Top Down Programming in Large Systems, " Debugging Techniques
in Large Systems. (Rustin, R., ed.), Prentice-Hall (1971).

18. Dijkstra, E.W. "Notes on Structured Programming, " Technische Hogeschool
Eindhoven, Report No. EW-D-249, 70-WSK-03, 2nd edition (April 1970)
(Notes, p. 1).

19. Mills, H. "Structured Programming in Large Systems," unpublished memo
(can be obtained from author), p. 10.

20. Digstaff. "PDP-11 Handbook," sec. edit.. Digital Equipment Company,
Maynard, Massachusetts (1970).

21. Dijkstra, E.W. "Notes on Structured Programming," Technische Hogeschool
Eindhoven, Report No. EW-D-249, 70-WSK-03, 2nd edition (April 1970), p. 36.

22. ibid, pp. 36-49.

23. ibid, pp. 64-75.

24. Snowden,R. "System for the Preparation and Validation of Structured Programs,"
Program Test Methods (Hetzel, W.C., ed.), Prentice-Hall, Englewood Cliffs,
New Jersey (1973), pp. 57-74,

25. Baker, T.F. "System Quality through Structured Programming," Fall Joint
Computer Conference (1972),

26. Ross, D.T, "Introduction to Software Engineering," Report ESL-R-405,
Electronic Systems Laboratory M.I.T., Cambridge, Massachusetts (1969),p.223.

27. McGonagle, J.D, "A Study of a Software Development Project, Final Report, "
Contract No, F04701-71-C-0373, CCIP-85, Air Force Systems Command, Los
Angeles (1971),

80

 ■ --—- -. , .

—*,

BIBLIOGItAPHY

Aaron, J.D. "The Super-Programmer Project," Software Engineering Techniques.

NATO Science Affairs Division (April 1970), pp. 50-52.

Atwood, J. Wm. "I/O Supervision in the Project Sue Operating System, " Computer.

vol. G (November 1973), pp. 19-23.

Aslanian, R. and Bennett, M. "Evolutive Modelling and Evaluation of Operating
and Computer Systems, " Research Report CA-016, Compagnie International pour

I'lnformatique, France.

Baker, F.T. "Ch'ef Programmer Team Management of Production Programming,"

IBM Systems Journal, vol. 11, no. 1 (1972).

Baker, F.T. "System Quality through Structured Programming, " FJCC 1972.

Baker, F.T. and Mills, H.D. "Chief Programmer Teams," Datamation, vol. 19

(December 1973), pp. 58-61.

Böhm, C. and Jacopini, G. "Flow Diagrams, 'Riring Machines and Languages with
Only Two Formation Rules," Communications of the ACM. (May 1966), pp. 366-371.

Burkhard!, W. H. and Randel, R. C. "Design of Operating Systems with Micro-
Programmed Implementation, " National Technical Information Service PB-224

484/6WC, 1973.

Carey, L. J. "IEEE Symposium on Software Reliability," Datamation, vol. 19

(October 1973), pp. 119-125.

Cheatham T E "The Recent Evolution of Programming Languages, " Proceedings
of the IFIP Congress 71 (Freeman, C.V., ed.), North-Holland, Amsterdam (1972),

pp. 298-313.

Chevy, L. L. "Some Case Studies in Structured Programming," MITRE, MTR 2648

VI, 1973.

Cincinnati University and Draper Laboratory. "Top Down, Bottom Up Structured
Programming and Program Structuring," National Technical Information Servxce

(NTIS) N 73-25211 72.

Clark, R. L. "A Linguistic Contribution to GOTO-less Programming," Datamation,

vol. 19 (December 1973), pp. 62-63.

81

|iMHtti|aa|Hi|MMa||i
..■I i M.I ■ ■miMiii - ■ Htlll I I I

■"' ->'-

Cole N M and Sukel, M. J. "Solving a Software Design Problem Using Plain
English," Datamation, vol. 19 (October 1973). pp. 101-106.

Dijkstra E W. "Programming Considered as a Human Activity, " Proceedings
of the IF!P Congress. 1965. Spartan Books. Washington, D.C. (1965).

Dijkstra. E.W. -The Structure of the'THE' Multiprogramming System. " Com-

municati'ons of the ACM (May 1968). pp. 341-346.

Dijkstra. E.W. "A Constructive Approach to the Problem of Program Correctness, "

BIT, vol'. 6 (1968), pp. 174-186.

Dijkstra, E.W. "GOTO Statement Considered Harmful," Communications of the

ACM, vol. 11 (March 1968). pp. 147-148.

Dijkstra. E.W. "Reply to Letter on GOTO Statement." Communications of the

ACM, vol. 11 (August 1968). p. 538.

Dijkstra. E.W. "Notes on Structured Programming." EWD 249. Technische

Hogeschool Eindhoven (1970).

Dijkstra. E.W. "Hierarchical Ordering of Sequential Processes, " EWD 310.

Technische Hogeschool Eindhoven.

Dijkstra, E.W. "Structured Programming." Software Engineering Techniques.
NATO Science Affairs Division. Brussels 39 (April 1970).

Dijkstra. E.W. "The Humble Programmer." ACM Turing Lecture 1972, EWD 340,
Technische Hogeschool Eindhoven (1972).

Donaldson, J.R. "Structured Programming," Datamation, vol. 19 (December 1973).

pp. 52-54.

Ershow. A. P. "Aesthetics and the Human Factor in Programming." The Computer

Bulletin, vol. 16 (July 1972), pp. 352-355.

Gallaher. L. J. "Letter on the Impact of GOTO-less Programming. " The Computer

Journal.'vol. 16 (August 1973), pp. 284-285.

Harris, L. R. "Logical Control Structure for APL," National Technical Informa-

tion Service AD 766 542/5WC (1973).

Henderson, P. and Snowden, R. "An Experiment in Structured Programming,"

BIT 12 (1972), pp. 38-53.

82

tLdU^-^W.- --^-^*^- ■^—-"!—-■• ■ - - - ■■■■'-— '- -^^.^-J-.—..-^■w.-...,^..... - -■■ -+■ - .^■^-.-^■^^■^--^ ..,■,*,■-|l^, ng

J4.Ui.iiM

Hansen, P,B. "Concurrent Programming Concepts, " ACM Computing Surveys,
vol. 5, no. 4 (1973), pp. 223-245.

Hansen, P.B. "Structured Multiprogramming." Communications of the ACM.
vol. 15 (July 1972), pp. 574-578.

Hoare, C.A.R. "Proof of Programs, Partition and Find, " The Queens University
of Belfast, Department of Computer Science Report, 1969.

Hoare, C.A.R. 'An Axiomatic Basis for Computer Programming," Communi-
cations of the ACM, vol. 12 (October 1969), pp. 576-580.

Hoare, C.A.R. "A Structured Programming System, " The Computer Journal.
vol. 16, no. 3 (August 1973), pp. 209-215.

Hoare, C.A.R. "Proof of a Program Find, " Communications of the ACM, vol. 14
(January 1971), pp. 30-45.

Hopkins, M.A. "In Support of GOTO, " Proceedings of the ACM 25. vol. H (1972),
ACM, New York, pp. 787-790.

Horning, J.J. and Randell, B. "Process Structuring, " ACM Computing Surveys,
vol. 5, no. 1 (March 1973), pp. ,5-29.

Hull, T.E., Enright, W.H. and Sedgwick, A.E. "The Correctness of Numerical
Algorithms, " Proceedings of the Conference on Proving Assertions About Pro-
grams (January 1972), pp. 66-73.

Irmscher, M. "Structure of a Program Documentation Represented by an Example
of the Documentation of an Operating System, " Rechentich Datenverorb (Germany),
vol. 10, no. 7 (July 1973), pp. 13-15.

Iverson, K. "Programming Notation in Systems Design, " IBM Systems Journal
(June 1963), pp. 117-128.

Jackson, M. and Sanwick, A.B. "Segmented-Level Programming," Computers
and Automation, vol. 18 (February 1969), pp. 23-26.

Jones, C.B. "A Formal Development of Correct Algorithms: An Example Based
on Early's Recognizer," Proceedings of the Conference on Proving Assertions
About Programs (January 1972), pp. 150-169.

Jones, L. H. "The Role of Instruction Sequencing in Structured Microprogramming, "
SIGMICRO Newsletter, vol. 4, no. 3 (October 1973), pp. 17-21.

83

Keefe, D.D. "Hierarchical Control Programs for Systems Evaluation," IBM
Systems Journal, vol. 7, no. 2 (1968), pp. 123-133.

Knuth, D.E. "A Review of Structured Programming," National Technical Infor-
mation Service (NT1S) PB 223 572/9WC.

Knuth, D.E. and Floyd, R.W. "Notes on Avoiding GOTO Statements, " Computer
Science Technical Report CS 148, Stanford University (January 1970).

Leavenworth, B. M. "Programming With(out) the GOTO, " Proceedings of the
ACM 25. vol. II, (1972), ACM, New York, pp. 782-786. ^

London, R. L. "Bibliography on Proving the Correctness of Computer Programs,"
Machine Intelligence 5. American Elsevier Publishing Company, New York
(1945), pp. 569-580.

Luckman, D.C. and Park, D.M.R. "On Formalized Computer Programs,"
Journal of Computer and System Sciences (June 1970), pp. 220-249.

Magnusan, R. A. "A Structured Assembly Language Source Program Generator,
Version 4," National Technical Information Service (NTIS) PN-225-094/2WC (1973).

Manna, Z. and Ashcroft, E. A. "The Translation of GOTO Programs to WHILE
Programs," Stanford University, California, CS-188 (1970).

McCracken, D.D. "Revolution in Programming," Datamation, vol. 19 (December
1973), pp. 50-52.

McGonagle, J.D. "A Study of a Software Development Project, Final Report, "
Contract No. F04701-71-C-0373, CCIP-85, Air Force Systems Command, Los
Angeles (1971).

McHenry, R. C. "Management Concepts for Top Down Structured Programming, "
IBM Corporation, Gaithersburg, Maryland, FSC 73-001 (February 1973).

Miller, E. "Bibliography of Practical Software Validation Techniques," General
Research Corporation, Santa Barbara, California.

Miller, E.F. "Extensions to FORTRAN and Structured Programming - An Experi-
ment," General Research Corporation, Santa Barbara, California, RM-1608
(March 1972).

Miller, E.F. and Lindamood, G.E. "Structured Programming Top Down Approach,'
Datamation, vol. 19 (December 1973), pp. 55-57.

84

i i ■IU.I " ■ ' ^r——7——- . .^Lja^^^r-- u i^'^^ . ^gw^^^«^—w^^^i^^w«»^»—»-^—

Mills, H. D. "Mathematical Foundations for Structured Programming, " IBM
Corporation, Gaithersburg, Maryland, FSC 72-6012 (February 1972).

Mills, H. D. "On the Development of Large Reliable Programs, " SIGPLAN
Notices, vol. 8, no. 3 (August 1973), p. 2.

Mills, H.D. "Top Down Programming in Large Systems," Debugging Techniques
in Large Systems. (Rustin, R., ed.). Prentice Hall, New York (1971), pp. 41-56.

Mills, H.D. "Syntax-Directed Documentation for PL 360, " Communications of
the ACM, vol. 13, no. 4 (1970), pp. 216-222.

Mills, H.D. "Structured Programming in Large Systems," unpublished memo
(November 1970).

Nassi, I. and Shneiderman, B, "Flowchart Techniques for Structured Program-
ming, " SIGPLAN Notices, vol. 8, no. 3 (August 1973), pp. 12-26.

Naur, P. "An Experiment on Program Development," BIT, vol. 12 (1972),
pp. 347-365.

Naur, P. "Programming by Action Cluster, " BIT, vol. 9 (1969), pp. 250-258.

Ogden, J.L. "Improving Software Reliability, " Datamation, vol. 19 (January
1973), pp. 49-52.

Pagan, F.G. "On the Teaching of Disciplined Programming, " SIGPLAN Notices,
vol. 8 (October 1973), pp. 44-48.

Parnas, D. L. and Darringer, J. "SODAS and a Methodology for Systems Design, "
Proceedings FJCC (1967). pp. 449-474.

Parnas, D. L. "On the Criteria to be Used in Decomposing Systems into Modules, "
Communications of the ACM, vol. 15 (December 1972), pp. 1053-1058.

Parnas, D. L. "More on Simulation Languages and Design Methodology for Compu-
ter Systems," Proceedings FJCC (1969). pp. 739-743.

Parnas, D.L. "Sequential Process: A Fuzzy Concept," unpublished memo
available on request from the author.

Parnas, D. L. "A Language for Describing the Function of Synchronous Systems, "
Communications of the ACM, vol. 9, no. 2 (1966).

Parnas, D.L. "A Parodigm for Software Module Specification with Examples,
Carnegie-Mellon University, Department of Computer Science (March 1971).

85

 --—--■-»"-"»^-«■-»-—--"■—^—^—■_.„^„..i._J ^^.^...■„„■^..»c. ...,-■—.-.—;.|M-1,|lnt,.,»^ii»j,.^,.„......^.J:.ü....j ..- iii-m'firäitrrJ--; ■..-^■^-'-»—^.«■«■J»-

—-" ■M^BMB

Randell, B. "Toward a Methodology of Computing System Design, " Software
Engineering, NATO Science Affairs Division, Brussels 38 (October 1968),
pp. 204-208.

Schnupp, P. "Abstraction and Model Formation - Toois of the Software
Developer," ONLINE (Germany), vol. 10, no. 78 (August 1973), pp. 526-532.

Snowden, R. A. "System for the Preparation and Validation of Structured Pro-
grams," Program Test Methods (Hetzel. W.C., ed.). Prentice-Hall, Englewood
Cliffs, New Jersey (1973), pp. 57-54.

Stillman, R. B. "A Survey of Techniques for Increasing Software Reliability, "
Proceedings of 1973 Summer Computation Simulation Conference. II, LaJolla,
California, U.S.A. Simulation Council (1973), pp. 1130-1133.

Varney, R.C. and Gotterer, M.H. "The Structural Foundation for an Operating
System," Computer Journal, vol. 16, no. 4 (November 1973).

Wegner, E. "Tree Structured Programs," Communications of the ACM, vol. 10,
(November 1973), pp. 704-705.

Weinberg, G.M. "The Psychology of Computer Programming," Van Nostrand
(1971).

Weinberg, G.M. "The Psychology of Improved Programming Performance,"
Datamation, vol. 18 (November 1972), pp. 82-85.

Wirth, N. "Program Development by Stepwise Refinement," Communications of
the ACM, vol. 14 (April 1971), pp. 221-227.

Wirth, N. Systematic Programming; An Introduction. Prentice-Hall, Englewood
Cliffs, New Jersey (1973),

Wulf, W.A. "A Case Against the GOTO," Proceedings of the ACM 25. vol. II
(1972), ACM, New York, pp. 791-796. "

Zurohtr, F.W. and Randell, B. "Multi-Level Modeling - A Methodology for
Computer System Design, " Proceedings IFIPS (1968).

86

__. - - —

mmmmmi^m -^ -i nnm*Ms^mmmm - , "ii«i

UNCLASSIFIED

/

SCCUWiTY CL»>VFtC»TIOW OF THIS PAGE (Whm Dmm KntOTg

REPORT DOCUMENTATION PAGE

'

/^

AFAL^TR-73-4jrf
2. SOVT ACCESSION NO

4. JlJLf. (mid Subtltl»)

Structured Software Study (S

READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. RECIPIENT'S CATALOG NUMBEN

■ ?»wfc af 1—M I mwieiB eovewep

'(

7- AUTHONft;

J. David McCIonagle

» PERFORMING ORGANIZATION NAME AND ADDRESS

J. D. McGonagle and Company
246 Howarth Road
Media. Pennsylvania 19063

'I CONTROLLING OFFICE NAME AND ADDRESS

Air Force Avionics Laboratory (FY1175)

Wright Patterson AFB, Ohio 45433
m

TT MONITORING AGENCY NAME • AODRESSf" dfffcrant from CmtUolUnf Olllc»)

IS. DISTRIBUTION STATEMENT (ol (Ma Rtport)

Final Aff/ ,] // ,v t, /f—
Too Sau ■ ■EBEORIWytf ORG. JUatORT-M

J&M 73-5 ""
1. CONTRACT OR GRANT NUIBIRRr«;

A-//J
F33615-72-C-»f^-

10. PROGRAM ELEMENT. PROJECT. TASK
AREA • WORK UNIT NUMBERS

Project No, 6090

31 Oet<tor H74
IS NUMBER'omtBE»^

96
IS. SECURITY CLASS, (ol ihlt raport;

UNCLASSIFIED
IS«. DECLASSIFICATION/DOWNGRADING

SCHEDULE

Ji/A.

Distribution limited to U. S. Government agencies only, Test and Evaluation,
19 July 1974. Other requests for this document must be referred to the
Air Force Avionics Laboratory (A^l6), Wright-Patterson AFB, Ohio 45433,

17. OISTRIBUTIOK tTATEHrHTTHTm» «t«(f«ct «nff JTn'granraP. » gfWHi OK ITA-f EMENT fo'»>• abtlrmel mtlmd In BMBM W, 11 UIIIBIBII MB Kaßort)

It. SUPPLEMENTARY HOI»»

It. KEY WORDS (CanttnM on rvrar** «Id« tl n»e»mrmr and löftllly toy block i

Structured Programming
Program Structure
Program Design
Program Composition

Program Decomposition
Modular Programming
Top-Down Design
Understanding Programming

PDP-11
CPU Simulation
Program Validity

20. ABSTRACT (Contlnuo on towmoo «Ida II I»C**««>T and IdiHIIr by block number)

This study reports an evaluation of Structured Programming as an aid in the
production of highly reliable computer programs. An approach to problem analysis
and program composition which organizes the program text to clearly reflect the
order of execution for the program. The resultant program text reflects the sub-
division of the problem into smaller tasks which are clearly identifiable. The

DO FORM
I JAN Tt 1473 EDITION OF I NOV tt II OBSOLETE

S/N 0102-014-t601 I
UNCLASSIFIED

M //,

s<

r

SECURITY CLASSIFICATION OF THIS PAGE (Whon Dmm

s/ci -:(
• ■ — mm

